ترغب بنشر مسار تعليمي؟ اضغط هنا

An agent-based model of multi-dimensional opinion dynamics and opinion alignment

207   0   0.0 ( 0 )
 نشر من قبل Frank Schweitzer
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that individual opinions on different policy issues often align to a dominant ideological dimension (e.g. left vs. right) and become increasingly polarized. We provide an agent-based model that reproduces these two stylized facts as emergent properties of an opinion dynamics in a multi-dimensional space of continuous opinions. The mechanisms for the change of agents opinions in this multi-dimensional space are derived from cognitive dissonance theory and structural balance theory. We test assumptions from proximity voting and from directional voting regarding their ability to reproduce the expected emerging properties. We further study how the emotional involvement of agents, i.e. their individual resistance to change opinions, impacts the dynamics. We identify two regimes for the global and the individual alignment of opinions. If the affective involvement is high and shows a large variance across agents, this fosters the emergence of a dominant ideological dimension. Agents align their opinions along this dimension in opposite directions, i.e. create a state of polarization.



قيم البحث

اقرأ أيضاً

We propose an agent-based model of collective opinion formation to study the wisdom of crowds under social influence. The opinion of an agent is a continuous positive value, denoting its subjective answer to a factual question. The wisdom of crowds s tates that the average of all opinions is close to the truth, i.e. the correct answer. But if agents have the chance to adjust their opinion in response to the opinions of others, this effect can be destroyed. Our model investigates this scenario by evaluating two competing effects: (i) agents tend to keep their own opinion (individual conviction $beta$), (ii) they tend to adjust their opinion if they have information about the opinions of others (social influence $alpha$). For the latter, two different regimes (full information vs. aggregated information) are compared. Our simulations show that social influence only in rare cases enhances the wisdom of crowds. Most often, we find that agents converge to a collective opinion that is even farther away from the true answer. So, under social influence the wisdom of crowds can be systematically wrong.
123 - Andre C. R. Martins 2021
Traditional opinion dynamics models are simple and yet, enough to explore the consequences in basic scenarios. But, to better describe problems such as polarization and extremism, we might need to include details about human biases and other cognitiv e characteristics. In this paper, I explain how we can describe and use mental models and assumptions of the agents using Bayesian-inspired model building. The relationship between human rationality and Bayesian methods will be explored, and we will see that Bayesian ideas can indeed be used to explain how humans reason. We will see how to use Bayesian-inspired rules using the simplest version of the Continuous Opinions and Discrete Actions (CODA) model. From that, we will explore how we can obtain update rules that include human behavioral characteristics such as confirmation bias, motivated reasoning, or our tendency to change opinions much less than we should. Keywords: Opinion dynamics, Bayesian methods, Cognition, CODA, Agent-based models
We study the joint evolution of worldviews by proposing a model of opinion dynamics, which is inspired in notions from evolutionary ecology. Agents update their opinion on a specific issue based on their propensity to change -- asserted by the social neighbours -- weighted by their mutual similarity on other issues. Agents are, therefore, more influenced by neighbours with similar worldviews (set of opinions on various issues), resulting in a complex co-evolution of each opinion. Simulations show that the worldview evolution exhibits events of intermittent polarization when the social network is scale-free. This, in turn, trigger extreme crashes and surges in the popularity of various opinions. Using the proposed model, we highlight the role of network structure, bounded rationality of agents, and the role of key influential agents in causing polarization and intermittent reformation of worldviews on scale-free networks.
205 - Andre C. R. Martins 2010
Opinion Dynamics lacks a theoretical basis. In this article, I propose to use a decision-theoretic framework, based on the updating of subjective probabilities, as that basis. We will see we get a basic tool for a better understanding of the interact ion between the agents in Opinion Dynamics problems and for creating new models. I will review the few existing applications of Bayesian update rules to both discrete and continuous opinion problems and show that several traditional models can be obtained as special cases or approximations from these Bayesian models. The empirical basis and useful properties of the framework will be discussed and examples of how the framework can be used to describe different problems given.
Opinion formation is an important element of social dynamics. It has been widely studied in the last years with tools from physics, mathematics and computer science. Here, a continuous model of opinion dynamics for multiple possible choices is analys ed. Its main features are the inclusion of disagreement and possibility of modulating information, both from one and multiple sources. The interest is in identifying the effect of the initial cohesion of the population, the interplay between cohesion and information extremism, and the effect of using multiple sources of information that can influence the system. Final consensus, especially with external information, depends highly on these factors, as numerical simulations show. When no information is present, consensus or segregation is determined by the initial cohesion of the population. Interestingly, when only one source of information is present, consensus can be obtained, in general, only when this is extremely mild, i.e. there is not a single opinion strongly promoted, or in the special case of a large initial cohesion and low information exposure. On the contrary, when multiple information sources are allowed, consensus can emerge with an information source even when this is not extremely mild, i.e. it carries a strong message, for a large range of initial conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا