ﻻ يوجد ملخص باللغة العربية
In [SWW16, HW17] it is shown that the difference of the first two eigenvalues of the Laplacian with Dirichlet boundary condition on convex domain with diameter $D$ of sphere $mathbb S^n$ is $geq 3 frac{pi^2}{D^2}$ when $n geq 3$. We prove the same result when $n=2$. In fact our proof works for all dimension. We also give an asymptotic expansion of the first and second Dirichlet eigenvalues of the model in [SWW16].
In their celebrated work, B. Andrews and J. Clutterbuck proved the fundamental gap (the difference between the first two eigenvalues) conjecture for convex domains in the Euclidean space and conjectured similar results holds for spaces with constant
Adapting the method of Andrews-Clutterbuck we prove an eigenvalue gap theorem for a class of non symmetric second order linear elliptic operators on a convex domain in euclidean space. The class of operators includes the Bakry-Emery laplacian with po
In the previous work [35], the second and third authors established a Bochner type formula on Alexandrov spaces. The purpose of this paper is to give some applications of the Bochner type formula. Firstly, we extend the sharp lower bound estimates of
We investigate the low-energy behavior of the gradient flow of the $L^2$ norm of the Riemannian curvature on four-manifolds. Specifically, we show long time existence and exponential convergence to a metric of constant sectional curvature when the in
We study a fractional conformal curvature flow on the standard unit sphere and prove a perturbation result of the fractional Nirenberg problem with fractional exponent $sigma in (1/2,1)$. This extends the result of Chen-Xu (Invent. Math. 187, no. 2,