ﻻ يوجد ملخص باللغة العربية
We investigate the low-energy behavior of the gradient flow of the $L^2$ norm of the Riemannian curvature on four-manifolds. Specifically, we show long time existence and exponential convergence to a metric of constant sectional curvature when the initial metric has positive Yamabe constant and small initial energy.
We show some results for the $L^2$ curvature flow linked by the theme of addressing collapsing phenomena. First we show long time existence and convergence of the flow for $SO(3)$-invariant initial data on $S^3$, as well as a long time existence and
We study a fractional conformal curvature flow on the standard unit sphere and prove a perturbation result of the fractional Nirenberg problem with fractional exponent $sigma in (1/2,1)$. This extends the result of Chen-Xu (Invent. Math. 187, no. 2,
We prove that for a solution $(M^n,g(t))$, $tin[0,T)$, where $T<infty$, to the Ricci flow with bounded curvature on a complete non-compact Riemannian manifold with the Ricci curvature tensor uniformly bounded by some constant $C$ on $M^ntimes [0,T)$,
We generalize most of the known Ricci flow invariant non-negative curvature conditions to less restrictive negative bounds that remain sufficiently controlled for a short time. As an illustration of the contents of the paper, we prove that metrics
This is a contribution to the program of dynamical approach to mean curvature flow initiated by Colding and Minicozzi. In this paper, we prove two main theorems. The first one is local in nature and the second one is global. In this first result, we