ترغب بنشر مسار تعليمي؟ اضغط هنا

Vu Ngocs Conjecture on focus-focus singular fibers with multiple pinched points

155   0   0.0 ( 0 )
 نشر من قبل Xiudi Tang
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We classify, up to symplectomorphisms, a neighborhood of a singular fiber of an integrable system (which is proper and has connected fibers) containing $k > 1$ focus-focus critical points. Our result shows that there is a one-to-one correspondence between such neighborhoods and $k$ formal power series, up to a $(mathbb{Z}_2 times D_k)$-action, where $D_k$ is the $k$-th dihedral group. The $k$ formal power series determine the dynamical behavior of the Hamiltonian vector fields $X_{f_1}, X_{f_2}$ associated to the components $f_1, f_2 colon (M, omega) to mathbb{R}$ of the integrable system on the symplectic manifold $(M,omega)$ via the differential equation $omega(X_{f_i}, cdot) = mathop{}!mathrm{d} f_i$, near the singular fiber containing the $k$ focus-focus critical points. This proves a conjecture of San Vu Ngoc from 2002.



قيم البحث

اقرأ أيضاً

About 6 years ago, semitoric systems were classified by Pelayo & Vu Ngoc by means of five invariants. Standard examples are the coupled spin oscillator on $mathbb{S}^2 times mathbb{R}^2$ and coupled angular momenta on $mathbb{S}^2 times mathbb{S}^2$, both having exactly one focus-focus singularity. But so far there were no explicit examples of systems with more than one focus-focus singularity which are semitoric in the sense of that classification. This paper introduces a 6-parameter family of integrable systems on $mathbb{S}^2 times mathbb{S}^2$ and proves that, for certain ranges of the parameters, it is a compact semitoric system with precisely two focus-focus singularities. Since the twisting index (one of the semitoric invariants) is related to the relationship between different focus-focus points, this paper provides systems for the future study of the twisting index.
This work is devoted to a systematic study of symplectic convexity for integrable Hamiltonian systems with elliptic and focus-focus singularities. A distinctive feature of these systems is that their base spaces are still smooth manifolds (with bound ary and corners), similarly to the toric case, but their associated integral affine structures are singular, with non-trivial monodromy, due to focus singularities. We obtain a series of convexity results, both positive and negative, for such singular integral affine base spaces. In particular, near a focus singular point, they are locally convex and the local-global convexity principle still applies. They are also globally convex under some natural additional conditions. However, when the monodromy is sufficiently big then the local-global convexity principle breaks down, and the base spaces can be globally non-convex even for compact manifolds. As one of surprising examples, we construct a 2-dimensional integral affine black hole, which is locally convex but for which a straight ray from the center can never escape.
In this paper, we show that every singular fiber of the Gelfand--Cetlin system on coadjoint orbits of unitary groups is a smooth isotropic submanifold which is diffeomorphic to a $2$-stage quotient of a compact Lie group by free actions of two other compact Lie groups. In many cases, these singular fibers can be shown to be homogeneous spaces or even diffeomorphic to compact Lie groups. We also give a combinatorial formula for computing the dimensions of all singular fibers, and give a detailed description of these singular fibers in many cases, including the so-called (multi-)diamond singularities. These (multi-)diamond singular fibers are degenerate for the Gelfand--Cetlin system, but they are Lagrangian submanifolds diffeomorphic to direct products of special unitary groups and tori. Our methods of study are based on different ideas involving complex ellipsoids, Lie groupoids, and also general ideas coming from the theory of singularities of integrable Hamiltonian systems.
Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental an d theoretical results from many of the leading groups around the world. On the experimental side, it shows work on cold gases, warm vapors, rare-earth ion doped crystals and single atoms. On the theoretical side there are in-depth studies of existing memory protocols, proposals for new protocols including approaches based on quantum error correction, and proposals for new applications of quantum storage. Looking forward, we anticipate many more exciting results in this area.
Topological quantum computation started as a niche area of research aimed at employing particles with exotic statistics, called anyons, for performing quantum computation. Soon it evolved to include a wide variety of disciplines. Advances in the unde rstanding of anyon properties inspired new quantum algorithms and helped in the characterisation of topological phases of matter and their experimental realisation. The conceptual appeal of topological systems as well as their promise for building fault-tolerant quantum technologies fuelled the fascination in this field. This `focus on brings together several of the latest developments in the field and facilitates the synergy between different approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا