ﻻ يوجد ملخص باللغة العربية
We classify, up to symplectomorphisms, a neighborhood of a singular fiber of an integrable system (which is proper and has connected fibers) containing $k > 1$ focus-focus critical points. Our result shows that there is a one-to-one correspondence between such neighborhoods and $k$ formal power series, up to a $(mathbb{Z}_2 times D_k)$-action, where $D_k$ is the $k$-th dihedral group. The $k$ formal power series determine the dynamical behavior of the Hamiltonian vector fields $X_{f_1}, X_{f_2}$ associated to the components $f_1, f_2 colon (M, omega) to mathbb{R}$ of the integrable system on the symplectic manifold $(M,omega)$ via the differential equation $omega(X_{f_i}, cdot) = mathop{}!mathrm{d} f_i$, near the singular fiber containing the $k$ focus-focus critical points. This proves a conjecture of San Vu Ngoc from 2002.
About 6 years ago, semitoric systems were classified by Pelayo & Vu Ngoc by means of five invariants. Standard examples are the coupled spin oscillator on $mathbb{S}^2 times mathbb{R}^2$ and coupled angular momenta on $mathbb{S}^2 times mathbb{S}^2$,
This work is devoted to a systematic study of symplectic convexity for integrable Hamiltonian systems with elliptic and focus-focus singularities. A distinctive feature of these systems is that their base spaces are still smooth manifolds (with bound
In this paper, we show that every singular fiber of the Gelfand--Cetlin system on coadjoint orbits of unitary groups is a smooth isotropic submanifold which is diffeomorphic to a $2$-stage quotient of a compact Lie group by free actions of two other
Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental an
Topological quantum computation started as a niche area of research aimed at employing particles with exotic statistics, called anyons, for performing quantum computation. Soon it evolved to include a wide variety of disciplines. Advances in the unde