ترغب بنشر مسار تعليمي؟ اضغط هنا

Calcium Removal From Cardiac CT Images Using Deep Convolutional Neural Network

88   0   0.0 ( 0 )
 نشر من قبل Siming Yan
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Coronary calcium causes beam hardening and blooming artifacts on cardiac computed tomography angiography (CTA) images, which lead to overestimation of lumen stenosis and reduction of diagnostic specificity. To properly remove coronary calcification and restore arterial lumen precisely, we propose a machine learning-based method with a multi-step inpainting process. We developed a new network configuration, Dense-Unet, to achieve optimal performance with low computational cost. Results after the calcium removal process were validated by comparing with gold-standard X-ray angiography. Our results demonstrated that removing coronary calcification from images with the proposed approach was feasible, and may potentially improve the diagnostic accuracy of CTA.



قيم البحث

اقرأ أيضاً

In this paper, a deep neural network based ensemble method is experimented for automatic identification of skin disease from dermoscopic images. The developed algorithm is applied on the task3 of the ISIC 2018 challenge dataset (Skin Lesion Analysis Towards Melanoma Detection).
158 - Tung Nguyen , Kazuki Mori , 2016
In this paper, we present a novel approach that uses deep learning techniques for colorizing grayscale images. By utilizing a pre-trained convolutional neural network, which is originally designed for image classification, we are able to separate con tent and style of different images and recombine them into a single image. We then propose a method that can add colors to a grayscale image by combining its content with style of a color image having semantic similarity with the grayscale one. As an application, to our knowledge the first of its kind, we use the proposed method to colorize images of ukiyo-e a genre of Japanese painting?and obtain interesting results, showing the potential of this method in the growing field of computer assisted art.
Magnetic resonance imaging (MRI) has been proposed as a complimentary method to measure bone quality and assess fracture risk. However, manual segmentation of MR images of bone is time-consuming, limiting the use of MRI measurements in the clinical p ractice. The purpose of this paper is to present an automatic proximal femur segmentation method that is based on deep convolutional neural networks (CNNs). This study had institutional review board approval and written informed consent was obtained from all subjects. A dataset of volumetric structural MR images of the proximal femur from 86 subject were manually-segmented by an expert. We performed experiments by training two different CNN architectures with multiple number of initial feature maps and layers, and tested their segmentation performance against the gold standard of manual segmentations using four-fold cross-validation. Automatic segmentation of the proximal femur achieved a high dice similarity score of 0.94$pm$0.05 with precision = 0.95$pm$0.02, and recall = 0.94$pm$0.08 using a CNN architecture based on 3D convolution exceeding the performance of 2D CNNs. The high segmentation accuracy provided by CNNs has the potential to help bring the use of structural MRI measurements of bone quality into clinical practice for management of osteoporosis.
Computed Tomography (CT) imaging technique is widely used in geological exploration, medical diagnosis and other fields. In practice, however, the resolution of CT image is usually limited by scanning devices and great expense. Super resolution (SR) methods based on deep learning have achieved surprising performance in two-dimensional (2D) images. Unfortunately, there are few effective SR algorithms for three-dimensional (3D) images. In this paper, we proposed a novel network named as three-dimensional super resolution convolutional neural network (3DSRCNN) to realize voxel super resolution for CT images. To solve the practical problems in training process such as slow convergence of network training, insufficient memory, etc., we utilized adjustable learning rate, residual-learning, gradient clipping, momentum stochastic gradient descent (SGD) strategies to optimize training procedure. In addition, we have explored the empirical guidelines to set appropriate number of layers of network and how to use residual learning strategy. Additionally, previous learning-based algorithms need to separately train for different scale factors for reconstruction, yet our single model can complete the multi-scale SR. At last, our method has better performance in terms of PSNR, SSIM and efficiency compared with conventional methods.
Computerized detection of colonic polyps remains an unsolved issue because of the wide variation in the appearance, texture, color, size, and presence of the multiple polyp-like imitators during colonoscopy. In this paper, we propose a deep convoluti onal neural network based model for the computerized detection of polyps within colonoscopy images. The proposed model comprises 16 convolutional layers with 2 fully connected layers, and a Softmax layer, where we implement a unique approach using different convolutional kernels within the same hidden layer for deeper feature extraction. We applied two different activation functions, MISH and rectified linear unit activation functions for deeper propagation of information and self regularized smooth non-monotonicity. Furthermore, we used a generalized intersection of union, thus overcoming issues such as scale invariance, rotation, and shape. Data augmentation techniques such as photometric and geometric distortions are adapted to overcome the obstacles faced in polyp detection. Detailed benchmarked results are provided, showing better performance in terms of precision, sensitivity, F1- score, F2- score, and dice-coefficient, thus proving the efficacy of the proposed model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا