ﻻ يوجد ملخص باللغة العربية
In this paper, we classify regular polytopes with automorphism groups of order $2^n$ and Schlafli types ${4, 2^{n-3}}, {4, 2^{n-4}}$ and ${4, 2^{n-5}}$ for $n geq 10$, therefore giving a partial answer to a problem proposed by Schulte and Weiss in [Problems on polytopes, their groups, and realizations, Periodica Math. Hungarica 53(2006) 231-255].
By a map we mean a $2$-cell decomposition of a closed compact surface, i.e., an embedding of a graph such that every face is homeomorphic to an open disc. Automorphism of a map can be thought of as a permutation of the vertices which preserves the ve
The superextension $lambda(X)$ of a set $X$ consists of all maximal linked families on $X$. Any associative binary operation $*: Xtimes X to X$ can be extended to an associative binary operation $*: lambda(X)timeslambda(X)tolambda(X)$. In the paper w
We prove several theorems relating amenability of groups in various categories (discrete, definable, topological, automorphism group) to model-theoretic invariants (quotients by connected components, Lascar Galois group, G-compactness, ...). For exam
A graph is edge-transitive if its automorphism group acts transitively on the edge set. In this paper, we investigate the automorphism groups of edge-transitive graphs of odd order and twice prime valency. Let $Gamma$ be a connected graph of odd orde