ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of surface stoichiometry and quantum confinement on the electronic structure of small diameter InxGa1-xAs nanowires

75   0   0.0 ( 0 )
 نشر من قبل Pedram Razavi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic structures for InxGa1-xAs nanowires with [100], [110], and [111] orientations and critical dimensions of approximately 2 nm are treated within the framework of density functional theory. Explicit band structures are calculated and properties relevant to nanoelectronic design are extracted including band gaps, effective masses, and density of states. The properties of these III-V nanowires are compared to silicon nanowires of comparable dimensions as a reference system. In nonpolar semiconductors, quantum confinement and surface chemistry are known to play a key role in the determination of nanowire electronic structure. InxGa1-xAs nanowires have in addition effects due to alloy stoichiometry on the cation sublattice and due to the polar nature of the cleaved nanowire surfaces. The impact of these additional factors on the electronic structure for these polar semiconductor nanowires is shown to be significant and necessary for accurate treatment of electronic structure properties.



قيم البحث

اقرأ أيضاً

The non-trivial topology of the three-dimensional (3D) topological insulator (TI) dictates the appearance of gapless Dirac surface states. Intriguingly, when a 3D TI is made into a nanowire, a gap opens at the Dirac point due to the quantum confineme nt, leading to a peculiar Dirac sub-band structure. This gap is useful for, e.g., future Majorana qubits based on TIs. Furthermore, these Dirac sub-bands can be manipulated by a magnetic flux and are an ideal platform for generating stable Majorana zero modes (MZMs), which play a key role in topological quantum computing. However, direct evidence for the Dirac sub-bands in TI nanowires has not been reported so far. Here we show that by growing very thin ($sim$40-nm diameter) nanowires of the bulk-insulating topological insulator (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ and by tuning its chemical potential across the Dirac point with gating, one can unambiguously identify the Dirac sub-band structure. Specifically, the resistance measured on gate-tunable four-terminal devices was found to present non-equidistant peaks as a function of the gate voltage, which we theoretically show to be the unique signature of the quantum-confined Dirac surface states. These TI nanowires open the way to address the topological mesoscopic physics, and eventually the Majorana physics when proximitised by an $s$-wave superconductor.
We report results of investigations of structural and transport properties of GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn layer, separated from the QW by a 3 nm thick spacer. The structure has hole mobility of about 2000 cm2/(V*s) being by several orders of magnitude higher than in known ferromagnetic two-dimensional structures. The analysis of the electro-physical properties of these systems is based on detailed study of their structure by means of high-resolution X-ray diffractometry and glancing-incidence reflection, which allow us to restore the depth profiles of structural characteristics of the QWs and thin Mn containing layers. These investigations show absence of Mn atoms inside the QWs. The quality of the structures was also characterized by photoluminescence spectra from the QWs. Transport properties reveal features inherent to ferromagnetic systems: a specific maximum in the temperature dependence of the resistance and the anomalous Hall effect (AHE) observed in samples with both metallic and activated types of conductivity up to ~100 K. AHE is most pronounced in the temperature range where the resistance maximum is observed, and decreases with decreasing temperature. The results are discussed in terms of interaction of 2D-holes and magnetic Mn ions in presence of large-scale potential fluctuations related to random distribution of Mn atoms. The AHE values are compared with calculations taking into account its intrinsic mechanism in ferromagnetic systems.
Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D metallic states. We report on a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. High resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k-space. Comparison of the E(k$_x$,k$_y$) surface measured using ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by a factor of two. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (t$_{perp}$). This, the topology of the $E$=$E_F$ contour in k$_{||}$, and the fact that $t_{||}$/$t_{perp}sim 0.5$ proves that the Au-induced electron pockets possess a 2D, closed Fermi surface, this firmly places the Au/Ge(100) nanowire system outside being a potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with STS measurements of the spatially-resolved electronic structure and find that the spatially straight conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D nature of the Au-induced nanowire and sub-surface Ge-related states, an anomalous suppression of the density of states at the Fermi level is observed in both the STS and ARPES data, this phenomenon is discussed in the light of the effects of disorder.
131 - Ya-Ni Zhao , Shi-Xian Qu , Ke Xia 2011
The influence of the surface structure and vibration mode on the resistivity of Cu films and the corresponding size effect are investigated. The temperature dependent conductivities of the films with different surface morphologies are calculated by t he algorithm based upon the tight-binding linear muffin-tin orbital method and the Greens function technique. The thermal effect is introduced by setting the atomic displacements according to the Gaussian distribution with the mean-square amplitude estimated by the Debye model. The result shows that the surface atomic vibration contributes significantly to the resistivity of the systems. Comparing the conductivities for three different vibration modes, it is suggested that freezing the surface vibration is necessary for practical applications to reduce the resistivity induced by the surface electron-phonon scattering.
We analyze the quantum melting of two-dimensional Wigner molecules (WM) in confined geometries with distinct symmetries and compare it with corresponding thermal melting. Our findings unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale $n_X$. This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows melting from the WM to both the classical and quantum liquids. An intriguing signature of weakening liquidity with increasing temperature, $T$, is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal melting. Our study will help comprehending melting in a variety of experimental traps - from quantum dots to complex plasma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا