ﻻ يوجد ملخص باللغة العربية
Ultra wideband technology has shown great promise for providing high-quality location estimation, even in complex indoor multipath environments, but existing ultra wideband systems require tens to hundreds of milliwatts during operation. Backscatter communication has demonstrated the viability of astonishingly low-power tags, but has thus far been restricted to narrowband systems with low localization resolution. The challenge to combining these complimentary technologies is that they share a compounding limitation, constrained transmit power. Regulations limit ultra wideband transmissions to just -41.3 dBm/MHz, and a backscatter device can only reflect the power it receives. The solution is long-term integration of this limited power, lifting the initially imperceptible signal out of the noise. This integration only works while the target is stationary. However, stationary describes the vast majority of objects, especially lost ones. With this insight, we design Slocalization, a sub-microwatt, decimeter-accurate localization system that opens a new tradeoff space in localization systems and realizes an energy, size, and cost point that invites the localization of every thing. To evaluate this concept, we implement an energy-harvesting Slocalization tag and find that Slocalization can recover ultra wideband backscatter in under fifteen minutes across thirty meters of space and localize tags with a mean 3D Euclidean error of only 30 cm.
In this paper, we develop a new framework called blockchain-based Radio Frequency (RF)-powered backscatter cognitive radio network. In the framework, IoT devices as secondary transmitters transmit their sensing data to a secondary gateway by using th
Relative localization between autonomous robots without infrastructure is crucial to achieve their navigation, path planning, and formation in many applications, such as emergency response, where acquiring a prior knowledge of the environment is not
Localization based on received signal strength (RSS) has drawn great interest in the wireless sensor network (WSN). In this paper, we investigate the RSS-based multi-sources localization problem with unknown transmitted power under shadow fading. The
In this paper, we introduce an intelligent prediction system for mobile source localization in industrial Internet of things. The position and velocity of mobile source are jointly predicted by using Time Delay (TD) measurements in the intelligent sy
We propose a time-multiplexed DS-DBR/SOA-gated system to deliver low-power fast tuning across S-/C-/L-bands. Sub-ns switching is demonstrated, supporting 122$times$50 GHz channels over 6.05 THz using AI techniques.