ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce an intelligent prediction system for mobile source localization in industrial Internet of things. The position and velocity of mobile source are jointly predicted by using Time Delay (TD) measurements in the intelligent system. To predict the position and velocity, the Relaxed Semi-Definite Programming (RSDP) algorithm is firstly designed by dropping the rank-one constraint. However, dropping the rank-one constraint leads to produce a suboptimal solution. To improve the performance, we further put forward a Penalty Function Semi-Definite Programming (PF-SDP) method to obtain the rank-one solution of the optimization problem by introducing the penalty terms. Then an Adaptive Penalty Function Semi-Definite Programming (APF-SDP) algorithm is also proposed to avoid the excessive penalty by adaptively choosing the penalty coefficient. We conduct experiments in both a simulation environment and a real system to demonstrate the effectiveness of the proposed method. The results have demonstrated that the proposed intelligent APF-SDP algorithm outperforms the PF-SDP in terms of the position and velocity estimation whether the noise level is large or not.
Space information networks (SIN) are facing an ever-increasing thirst for high-speed and high-capacity seamless data transmission due to the integration of ground, air, and space communications. However, this imposes a new paradigm on the architectur
Undoubtedly, Mobile Augmented Reality (MAR) applications for 5G and Beyond wireless networks are witnessing a notable attention recently. However, they require significant computational and storage resources at the end device and/or the network via E
In this paper, we consider the problem of modelling the average delay experienced by a packet in a single cell IEEE 802.11 DCF wireless local area network. The packet arrival process at each node i is assumed to be Poisson with rate parameter lambda_
Internet of Things (IoT) is considered as the enabling platform for a variety of promising applications, such as smart transportation and smart city, where massive devices are interconnected for data collection and processing. These IoT applications
A deep learning approach based on big data is proposed to locate broadband acoustic sources using a single hydrophone in ocean waveguides with uncertain bottom parameters. Several 50-layer residual neural networks, trained on a huge number of sound f