ﻻ يوجد ملخص باللغة العربية
Finding influential users in online social networks is an important problem with many possible useful applications. HITS and other link analysis methods, in particular, have been often used to identify hub and authority users in web graphs and online social networks. These works, however, have not considered topical aspect of links in their analysis. A straightforward approach to overcome this limitation is to first apply topic models to learn the user topics before applying the HITS algorithm. In this paper, we instead propose a novel topic model known as Hub and Authority Topic (HAT) model to combine the two process so as to jointly learn the hub, authority and topical interests. We evaluate HAT against several existing state-of-the-art methods in two aspects: (i) modeling of topics, and (ii) link recommendation. We conduct experiments on two real-world datasets from Twitter and Instagram. Our experiment results show that HAT is comparable to state-of-the-art topic models in learning topics and it outperforms the state-of-the-art in link recommendation task.
Peoples personal social networks are big and cluttered, and currently there is no good way to automatically organize them. Social networking sites allow users to manually categorize their friends into social circles (e.g. circles on Google+, and list
A number of recent studies of information diffusion in social media, both empirical and theoretical, have been inspired by viral propagation models derived from epidemiology. These studies model the propagation of memes, i.e., pieces of information,
We introduce a new paradigm that is important for community detection in the realm of network analysis. Networks contain a set of strong, dominant communities, which interfere with the detection of weak, natural community structure. When most of the
Activity maximization is a task of seeking a small subset of users in a given social network that makes the expected total activity benefit maximized. This is a generalization of many real applications. In this paper, we extend activity maximization
Instant quality feedback in the form of online peer ratings is a prominent feature of modern massive online social networks (MOSNs). It allows network members to indicate their appreciation of a post, comment, photograph, etc. Some MOSNs support both