ترغب بنشر مسار تعليمي؟ اضغط هنا

Peer Ratings in Massive Online Social Networks

123   0   0.0 ( 0 )
 نشر من قبل Dmitry Zinoviev
 تاريخ النشر 2014
والبحث باللغة English
 تأليف Dmitry Zinoviev




اسأل ChatGPT حول البحث

Instant quality feedback in the form of online peer ratings is a prominent feature of modern massive online social networks (MOSNs). It allows network members to indicate their appreciation of a post, comment, photograph, etc. Some MOSNs support both positive and negative (signed) ratings. In this study, we rated 11 thousand MOSN member profiles and collected user responses to the ratings. MOSN users are very sensitive to peer ratings: 33% of the subjects visited the researchers profile in response to rating, 21% also rated the researchers profile picture, and 5% left a text comment. The grades left by the subjects are highly polarized: out of the six available grades, the most negative and the most positive are also the most popular. The grades fall into three almost equally sized categories: reciprocal, generous, and stingy. We proposed quantitative measures for generosity, reciprocity, and benevolence, and analyzed them with respect to the subjects demographics.



قيم البحث

اقرأ أيضاً

In this paper, we introduce a novel, general purpose, technique for faster sampling of nodes over an online social network. Specifically, unlike traditional random walk which wait for the convergence of sampling distribution to a predetermined target distribution - a waiting process that incurs a high query cost - we develop WALK-ESTIMATE, which starts with a much shorter random walk, and then proactively estimate the sampling probability for the node taken before using acceptance-rejection sampling to adjust the sampling probability to the predetermined target distribution. We present a novel backward random walk technique which provides provably unbiased estimations for the sampling probability, and demonstrate the superiority of WALK-ESTIMATE over traditional random walks through theoretical analysis and extensive experiments over real world online social networks.
In the past decade, blogging web sites have become more sophisticated and influential than ever. Much of this sophistication and influence follows from their network organization. Blogging social networks (BSNs) allow individual bloggers to form cont act lists, subscribe to other blogs, comment on blog posts, declare interests, and participate in collective blogs. Thus, a BSN is a bimodal venue, where users can engage in publishing (post) as well as in social (make friends) activities. In this paper, we study the co-evolution of both activities. We observed a significant positive correlation between blogging and socializing. In addition, we identified a number of user archetypes that correspond to mainly bloggers, mainly socializers, etc. We analyzed a BSN at the level of individual posts and changes in contact lists and at the level of trajectories in the friendship-publishing space. Both approaches produced consistent results: the majority of BSN users are passive readers; publishing is the dominant active behavior in a BSN; and social activities complement blogging, rather than compete with it.
Random walk-based sampling methods are gaining popularity and importance in characterizing large networks. While powerful, they suffer from the slow mixing problem when the graph is loosely connected, which results in poor estimation accuracy. Random walk with jumps (RWwJ) can address the slow mixing problem but it is inapplicable if the graph does not support uniform vertex sampling (UNI). In this work, we develop methods that can efficiently sample a graph without the necessity of UNI but still enjoy the similar benefits as RWwJ. We observe that many graphs under study, called target graphs, do not exist in isolation. In many situations, a target graph is related to an auxiliary graph and a bipartite graph, and they together form a better connected {em two-layered network structure}. This new viewpoint brings extra benefits to graph sampling: if directly sampling a target graph is difficult, we can sample it indirectly with the assistance of the other two graphs. We propose a series of new graph sampling techniques by exploiting such a two-layered network structure to estimate target graph characteristics. Experiments conducted on both synthetic and real-world networks demonstrate the effectiveness and usefulness of these new techniques.
190 - Ajay Sridharan 2010
Degree distribution of nodes, especially a power law degree distribution, has been regarded as one of the most significant structural characteristics of social and information networks. Node degree, however, only discloses the first-order structure o f a network. Higher-order structures such as the edge embeddedness and the size of communities may play more important roles in many online social networks. In this paper, we provide empirical evidence on the existence of rich higherorder structural characteristics in online social networks, develop mathematical models to interpret and model these characteristics, and discuss their various applications in practice. In particular, 1) We show that the embeddedness distribution of social links in many social networks has interesting and rich behavior that cannot be captured by well-known network models. We also provide empirical results showing a clear correlation between the embeddedness distribution and the average number of messages communicated between pairs of social network nodes. 2) We formally prove that random k-tree, a recent model for complex networks, has a power law embeddedness distribution, and show empirically that the random k-tree model can be used to capture the rich behavior of higherorder structures we observed in real-world social networks. 3) Going beyond the embeddedness, we show that a variant of the random k-tree model can be used to capture the power law distribution of the size of communities of overlapping cliques discovered recently.
137 - Taraneh Khazaei , Lu Xiao 2014
The emergence and ongoing development of Web 2.0 technologies have enabled new and advanced forms of collective intelligence at unprecedented scales, allowing large numbers of individuals to act collectively and create high quality intellectual artif acts. However, little is known about how and when they indeed promote collective intelligence. In this manuscript, we provide a survey of the automated tools developed to analyze discourse-centric collective intelligence. By conducting a thematic analysis of the current research direction, a set of gaps and limitations are identified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا