ﻻ يوجد ملخص باللغة العربية
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the programs capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org .
We present an implicit solvent model for ab initio electronic structure calculations which is fully self-consistent and is based on direct solution of the nonhomogeneous Poisson equation. The solute cavity is naturally defined in terms of an isosurfa
The accurate prediction of singlet and triplet excitation energies is of significant fundamental interest and is critical for many applications. An area of intense research, most calculations of singlet and triplet energies use time-dependent density
Quantum simulation of chemistry and materials is predicted to be an important application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the pr
A form of Jastrow factor is introduced for use in quantum Monte Carlo simulations of finite and periodic systems. Test data are presented for atoms, molecules, and solids, including both all-electron and pseudopotential atoms. We demonstrate that our
Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at