ﻻ يوجد ملخص باللغة العربية
We realize a two-dimensional electron system (2DES) in ZnO by simply depositing pure aluminum on its surface in ultra-high vacuum, and characterize its electronic structure using angle-resolved photoemission spectroscopy. The aluminum oxidizes into alumina by creating oxygen vacancies that dope the bulk conduction band of ZnO and confine the electrons near its surface. The electron density of the 2DES is up to two orders of magnitude higher than those obtained in ZnO heterostructures. The 2DES shows two $s$-type subbands, that we compare to the $d$-like 2DESs in titanates, with clear signatures of many-body interactions that we analyze through a self-consistent extraction of the system self-energy and a modeling as a coupling of a 2D Fermi liquid with a Debye distribution of phonons.
We report very large bandgap enhancement in SrTiO3 (STO) films (fabricated by pulsed laser deposition below 800 {deg}C), which can be up to 20% greater than the bulk value, depending on the deposition temperature. The origin is comprehensively invest
The consideration of oxygen vacancies influence on the relaxors with perovskite structure was considered in the framework of Landau-Ginzburg-Devonshire phenomenological theory. The theory applicability for relaxors is based on the existence of some h
Using density-functional-theory (DFT) calculations with the HSE06 hybrid functional, we accurately evaluate the critical thickness of LaAlO3 film for the intrinsic doping in LaAlO3/SrTiO3 (LAO/STO) heterstructures. The calculated critical thickness o
The relative importance of atomic defects and electron transfer in explaining conductivity at the crystalline LaAlO3/SrTiO3 interface has been a topic of debate. Metallic interfaces with similar electronic properties produced by amorphous oxide overl
The study of zinc oxide, within the homogeneous electron gas approximation, results in overhybridization of zinc $3d$ shell with oxygen $2p$ shell, a problem shown for most transition metal chalcogenides. This problem can be partially overcome by usi