ترغب بنشر مسار تعليمي؟ اضغط هنا

Bandgap Controlling of the Oxygen-Vacancy-Induced Two-Dimensional Electron Gas in SrTiO3

177   0   0.0 ( 0 )
 نشر من قبل Zhiqi Liu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report very large bandgap enhancement in SrTiO3 (STO) films (fabricated by pulsed laser deposition below 800 {deg}C), which can be up to 20% greater than the bulk value, depending on the deposition temperature. The origin is comprehensively investigated and finally attributed to Sr/Ti antisite point defects, supported by density functional theory calculations. More importantly, the bandgap enhancement can be utilized to tailor the electronic and magnetic phases of the two-dimensional electron gas (2DEG) in STO-based interface systems. For example, the oxygen-vacancy-induced 2DEG (2DEG-V) at the interface between amorphous LaAlO3 and STO films is more localized and the ferromagnetic order in the STO-film-based 2DEG-V can be clearly seen from low-temperature magnetotransport measurements. This opens an attractive path to tailor electronic, magnetic and optical properties of STO-based oxide interface systems under intensive focus in the oxide electronics community. Meanwhile, our study provides key insight into the origin of the fundamental issue that STO films are difficult to be doped into the fully metallic state by oxygen vacancies.



قيم البحث

اقرأ أيضاً

171 - Z. Q. Liu , C. J. Li , W. M. Lu 2013
The relative importance of atomic defects and electron transfer in explaining conductivity at the crystalline LaAlO3/SrTiO3 interface has been a topic of debate. Metallic interfaces with similar electronic properties produced by amorphous oxide overl ayers on SrTiO3 have called in question the original polarization catastrophe model. We resolve the issue by a comprehensive comparison of (100)-oriented SrTiO3 substrates with crystalline and amorphous overlayers of LaAlO3 of different thicknesses prepared under different oxygen pressures. For both types of overlayers, there is a critical thickness for the appearance of conductivity, but its value is always 4 unit cells (around 1.6 nm) for the oxygen-annealed crystalline case, whereas in the amorphous case, the critical thickness could be varied in the range 0.5 to 6 nm according to the deposition conditions. Subsequent ion milling of the overlayer restores the insulating state for the oxygen-annealed crystalline heterostructures but not for the amorphous ones. Oxygen post-annealing removes the oxygen vacancies, and the interfaces become insulating in the amorphous case. However, the interfaces with a crystalline overlayer remain conducting with reduced carrier density. These results demonstrate that oxygen vacancies are the dominant source of mobile carriers when the LaAlO3 overlayer is amorphous, while both oxygen vacancies and polarization catastrophe contribute to the interface conductivity in unannealed crystalline LaAlO3/SrTiO3 heterostructures, and the polarization catastrophe alone accounts for the conductivity in oxygen-annealed crystalline LaAlO3/SrTiO3 heterostructures. Furthermore, we find that the crystallinity of the LaAlO3 layer is crucial for the polarization catastrophe mechanism in the case of crystalline LaAlO3 overlayers.
Conventional two-dimensional electron gases are realized by engineering the interfaces between semiconducting compounds. In 2004, Ohtomo and Hwang discovered that an electron gas can be also realized at the interface between large gap insulators made of transition metal oxides [1]. This finding has generated considerable efforts to clarify the underlying microscopic mechanism. Of particular interest is the LaAlO3/SrTiO3 system, because it features especially striking properties. High carrier mobility [1], electric field tuneable superconductivity [2] and magnetic effects [3], have been found. Here we show that an orbital reconstruction is underlying the generation of the electron gas at the LaAlO3/SrTiO3 n-type interface. Our results are based on extensive investigations of the electronic properties and of the orbital structure of the interface using X-ray Absorption Spectroscopy. In particular we find that the degeneracy of the Ti 3d states is fully removed, and that the Ti 3dxy levels become the first available states for conducting electrons.
We have performed high field magnetotransport measurements to investigate the interface electron gas in LaAlO3/SrTiO3 heterostructures. Shubnikov-de Haas oscillations reveal several 2D conduction subbands with carrier effective masses between 1 and 3 m_e, quantum mobilities of order 3000 cm^2/V s, and band edges only a few millielectronvolts below the Fermi energy. Measurements in tilted magnetic fields confirm the 2D character of the electron gas, and show evidence of inter-subband scattering.
Similar to silicon that is the basis of conventional electronics, strontium titanate (SrTiO3) is the bedrock of the emerging field of oxide electronics. SrTiO3 is the preferred template to create exotic two-dimensional (2D) phases of electron matter at oxide interfaces, exhibiting metal-insulator transitions, superconductivity, or large negative magnetoresistance. However, the physical nature of the electronic structure underlying these 2D electron gases (2DEGs) remains elusive, although its determination is crucial to understand their remarkable properties. Here we show, using angle-resolved photoemission spectroscopy (ARPES), that there is a highly metallic universal 2DEG at the vacuum-cleaved surface of SrTiO3, independent of bulk carrier densities over more than seven decades, including the undoped insulating material. This 2DEG is confined within a region of ~5 unit cells with a sheet carrier density of ~0.35 electrons per a^2 (a is the cubic lattice parameter). We unveil a remarkable electronic structure consisting on multiple subbands of heavy and light electrons. The similarity of this 2DEG with those reported in SrTiO3-based heterostructures and field-effect transistors suggests that different forms of electron confinement at the surface of SrTiO3 lead to essentially the same 2DEG. Our discovery provides a model system for the study of the electronic structure of 2DEGs in SrTiO3-based devices, and a novel route to generate 2DEGs at surfaces of transition-metal oxides.
Using light to manipulate materials into desired states is one of the goals in condensed matter physics, since light control can provide ultrafast and environmentally-friendly photonics devices. However, it is generally difficult to realise a photo-i nduced phase which is not merely a higher entropy phase corresponding to a high-temperature phase at equilibrium. Here, we report realization of photo-induced insulator-to-metal transitions in Ta2Ni(Se1-xSx)5 including the excitonic insulator phase using time- and angle-resolved photoemission spectroscopy. From the dynamic properties of the system, we determine that screening of excitonic correlations plays a key role in the timescale of the transition to the metallic phase, which supports the existence of an excitonic-insulator phase at equilibrium. The non-equilibrium metallic state observed unexpectedly in the direct-gap excitonic insulator opens up a new avenue to optical band engineering in electron-hole coupled systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا