ﻻ يوجد ملخص باللغة العربية
We propose a minimal and self-contained model in non-compact flat five dimensions which localizes the Standard Model (SM) on a domain wall. Localization of gauge fields is achieved by the condensation of Higgs field via a Higgs dependent gauge kinetic term in five-dimensional Lagrangian. The domain wall connecting vacua with unbroken gauge symmetry drives the Higgs condensation which provides both electroweak symmetry breaking and gauge field localization at the same time. Our model predicts higher-dimensional interactions $|H|^{2n}(F_{mu u})^2$ in the low-energy effective theory. This leads to two expectations: The one is a new tree-level contribution to $H to gammagamma$ ($H to gg$) decay whose signature is testable in future LHC experiment. The other is a finite electroweak monopole which may be accessible to the MoEDAL experiment. Interactions of translational Nambu-Goldstone boson is shown to satisfy a low-energy theorem.
In this article we review the electroweak charged and neutral currents in the Non-Commutative Standard Model (NCSM) and compute the Higgs and Yukawa parts of the NCSM action. With the aim to make the NCSM accessible to phenomenological considerations
The Higgs mechanism well describes the electroweak symmetry breaking in nature. We consider a possibility that the microscopic origin of the Higgs field is UV physics of QCD. We construct a UV complete model of a higher dimensional Yang-Mills theory
The mass-generation mechanism is the most urgent problem of the modern particle physics. The discovery and study of the Higgs boson with the Large Hadron Collider at CERN are the highest priority steps to solve the problem. In this paper, the Standar
Recently, we have found an exact solution to the full set of Dyson-Schwinger equations of the non-interacting part of the Higgs sector of the Standard Model obtained by solving the 1-point correlation function equation. In this work we extend this an
We present results from a state-of-the-art fit of electroweak precision observables and Higgs-boson signal-strength measurements performed using 7 and 8 TeV data from the Large Hadron Collider. Based on the HEPfit package, our study updates the tradi