ﻻ يوجد ملخص باللغة العربية
The Higgs mechanism well describes the electroweak symmetry breaking in nature. We consider a possibility that the microscopic origin of the Higgs field is UV physics of QCD. We construct a UV complete model of a higher dimensional Yang-Mills theory as a deformation of a deconstructed (2,0) theory in six dimensions, and couple the top and bottom (s)quarks to it. We see that the Higgs fields appear as magnetic degrees of freedom. The model can naturally explain the masses of the Higgs boson and the top quark. The rho meson-like resonances with masses such as 1 TeV are predicted.
We show in this work how a sub-100 GeV $Z$ in a $U(1)$ extension of the Standard Model (SM) can emerge through Higgs mediated channels at the Large Hadron Collider (LHC). The light $Z$ has minimal interaction with the SM sector as well as vanishing k
We consider the extension of the Standard Model (SM) with a strongly interacting QCD-like hidden sector, at least two generations of right-handed neutrinos and one scalar singlet. Once scalar singlet obtains a nonzero vacuum expectation value, active
We propose gauge-Higgs unification in fuzzy extra dimensions as a possible solution to the Higgs naturalness problem. In our approach, the fuzzy extra dimensions are created spontaneously as a vacuum solution of certain four-dimensional gauge theory.
The Higgs boson is unified with gauge fields in the gauge-Higgs unification. The $SO(5) times U(1)$ gauge-Higgs electroweak unification in the Randall-Sundrum warped space yields almost the same phenomenology at low energies as the standard model, an
We propose a minimal and self-contained model in non-compact flat five dimensions which localizes the Standard Model (SM) on a domain wall. Localization of gauge fields is achieved by the condensation of Higgs field via a Higgs dependent gauge kineti