ترغب بنشر مسار تعليمي؟ اضغط هنا

A Helium-Surface Interaction Potential of Bi$_2$Te$_3$(111) from Ultrahigh-Resolution Spin-Echo Measurements

93   0   0.0 ( 0 )
 نشر من قبل Anton Tamt\\\"ogl
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have determined an atom-surface interaction potential for the He$-$Bi$_2$Te$_3$(111) system by analysing ultrahigh resolution measurements of selective adsorption resonances. The experimental measurements were obtained using $^3$He spin-echo spectrometry. Following an initial free-particle model analysis, we use elastic close-coupling calculations to obtain a three-dimensional potential. The three-dimensional potential is then further refined based on the experimental data set, giving rise to an optimised potential which fully reproduces the experimental data. Based on this analysis, the He$-$Bi$_2$Te$_3$(111) interaction potential can be described by a corrugated Morse potential with a well depth $D=(6.22pm0.05)~mathrm{meV}$, a stiffness $kappa =(0.92pm0.01)~mathrm{AA}^{-1}$ and a surface electronic corrugation of $(9.6pm0.2)$% of the lattice constant. The improved uncertainties of the atom-surface interaction potential should also enable the use in inelastic close-coupled calculations in order to eventually study the temperature dependence and the line width of selective adsorption resonances.



قيم البحث

اقرأ أيضاً

We have studied the topological insulator Bi$_2$Te$_3$(111) by means of helium atom scattering. The average electron-phonon coupling $lambda$ of Bi$_2$Te$_3$(111) is determined by adapting a recently developed quantum-theoretical derivation of the he lium scattering probabilities to the case of degenerate semiconductors. Based on the Debye-Waller attenuation of the elastic diffraction peaks of Bi$_2$Te$_3$(111), measured at surface temperatures between $110~mbox{K}$ and $355~mbox{K}$, we find $lambda$ to be in the range of $0.04-0.11$. This method allows to extract a correctly averaged $lambda$ and to address the discrepancy between previous studies. The relatively modest value of $lambda$ is not surprising even though some individual phonons may provide a larger electron-phonon interaction. Furthermore, the surface Debye temperature of Bi$_2$Te$_3$(111) is determined as ${rm Theta}_D = (81pm6)~mbox{K}$. The electronic surface corrugation was analysed based on close-coupling calculations. By using a corrugated Morse potential a peak-to-peak corrugation of 9% of the lattice constant is obtained.
We present a combined experimental and theoretical study of the surface vibrational modes of the topological insulator (TI) Bi$_2$Se$_3$ with particular emphasis on the low-energy region below 10 meV that has been difficult to resolve experimentally. By applying inelastic helium atom scattering (HAS), the entire phonon dispersion was determined and compared with density functional perturbation theory (DFPT) calculations. The intensity of the phonon modes is dominated by a strong Rayleigh mode, in contrast to previous experimental works. Moreover, also at variance with recent reports, no Kohn-anomaly is observed. These observations are in excellent agreement with DFPT calculations. Besides these results, the experimental data reveal$-$via bound-state resonance enhancement$-$two additional dispersion curves in the gap below the Rayleigh mode. They are possibly associated with an excitation of a surface electron density superstructure that we observe in HAS diffraction patterns. The electron-phonon coupling paramenter $lambda$ = 0.23 derived from our temperature dependent Debye-Waller measurements compares well with values determined by angular resolved photoemission or Landau level spectroscopy. Our work opens up a new perspective for THz measurements on 2D materials as well as the investigation of subtle details (band bending, the presence of quantum well states) with respect to the electron-phonon coupling.
We investigate the photocurrent properties of the topological insulator (Bi$_{0.5}$Sb$_{0.5}$)$_2$Te$_3$ on SrTiO$_3$-substrates. We find reproducible, submicron photocurrent patterns generated by long-range chemical potential fluctuations, occurring predominantly at the topological insulator/substrate interface. We fabricate nano-plowed constrictions which comprise single potential fluctuations. Hereby, we can quantify the magnitude of the disorder potential to be in the meV range. The results further suggest a dominating photo-thermoelectric current generated in the surface states in such nanoscale constrictions.
204 - A. Kogar , S. Vig , A. Thaler 2015
We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi$_2$Se$_3$ and Bi$_{0.5}$Sb$_{1.5}$Te$_{3-x}$Se$_{x}$. Our goal was to identify the spin plasmon p redicted by Raghu and co-workers [S. Raghu, et al., Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carrers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface, $chi (textbf{q},omega)$, at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.
Rubidium adsorption on the surface of the topological insulator Bi$_2$Se$_3$ is found to induce a strong downward band bending, leading to the appearance of a quantum-confined two dimensional electron gas states (2DEGs) in the conduction band. The 2D EGs shows a strong Rashba-type spin-orbit splitting, and it has previously been pointed out that this has relevance to nano-scale spintronics devices. The adsorption of Rb atoms, on the other hand, renders the surface very reactive and exposure to oxygen leads to a rapid degrading of the 2DEGs. We show that intercalating the Rb atoms, presumably into the van der Waals gaps in the quintuple layer structure of Bi$_2$Se$_3$, drastically reduces the surface reactivity while not affecting the promising electronic structure. The intercalation process is observed above room temperature and accelerated with increasing initial Rb coverage, an effect that is ascribed to the Coulomb interaction between the charged Rb ions. Coulomb repulsion is also thought to be responsible for a uniform distribution of Rb on the surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا