ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Surface Doping of Bi$_2$Se$_3$ by Rb Intercalation

244   0   0.0 ( 0 )
 نشر من قبل Philip Hofmann
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rubidium adsorption on the surface of the topological insulator Bi$_2$Se$_3$ is found to induce a strong downward band bending, leading to the appearance of a quantum-confined two dimensional electron gas states (2DEGs) in the conduction band. The 2DEGs shows a strong Rashba-type spin-orbit splitting, and it has previously been pointed out that this has relevance to nano-scale spintronics devices. The adsorption of Rb atoms, on the other hand, renders the surface very reactive and exposure to oxygen leads to a rapid degrading of the 2DEGs. We show that intercalating the Rb atoms, presumably into the van der Waals gaps in the quintuple layer structure of Bi$_2$Se$_3$, drastically reduces the surface reactivity while not affecting the promising electronic structure. The intercalation process is observed above room temperature and accelerated with increasing initial Rb coverage, an effect that is ascribed to the Coulomb interaction between the charged Rb ions. Coulomb repulsion is also thought to be responsible for a uniform distribution of Rb on the surface.



قيم البحث

اقرأ أيضاً

Achieving true bulk insulating behavior in Bi$_2$Se$_3$, the archetypal topological insulator with a simplistic one-band electronic structure and sizable band gap, has been prohibited by a well-known self-doping effect caused by selenium vacancies, w hose extra electrons shift the chemical potential into the bulk conduction band. We report a new synthesis method for achieving stoichiometric Bi$_2$Se$_3$ crystals that exhibit nonmetallic behavior in electrical transport down to low temperatures. Hall effect measurements indicate the presence of both electron- and hole-like carriers, with the latter identified with surface state conduction and the achievement of ambipolar transport in bulk Bi$_2$Se$_3$ crystals without gating techniques. With carrier mobilities surpassing the highest values yet reported for topological surface states in this material, the achievement of ambipolar transport via upward band bending is found to provide a key method to advancing the potential of this material for future study and applications.
112 - L. Luo , X. Yang , X. Liu 2018
The recent discovery of topology-protected charge transport of ultimate thinness on surfaces of three-dimensional topological insulators (TIs) are breaking new ground in fundamental quantum science and transformative technology. Yet a challenge remai ns on how to isolate and disentangle helical spin transport on the surface from bulk conduction. Here we show that selective midinfrared femtosecond photoexcitation of exclusive intraband electronic transitions at low temperature underpins topological enhancement of terahertz (THz) surface transport in doped Bi2Se3, with no complication from interband excitations or need for controlled doping. The unique, hot electron state is characterized by conserved populations of surface/bulk bands and by frequency-dependent hot carrier cooling times that directly distinguish the faster surface channel than the bulk. We determine the topological enhancement ratio between bulk and surface scattering rates, i.e., $gamma_text{BS}/gamma_text{SS}sim$3.80 in equilibrium. These behaviors are absent at elevated lattice temperatures and for high pumpphoton frequencies and uences. The selective, mid-infrared-induced THz conductivity provides a new paradigm to characterize TIs and may apply to emerging topological semimetals in order to separate the transport connected with the Weyl nodes from other bulk bands.
Three-dimensional topological insulators (3D-TIs) possess a specific topological order of electronic bands, resulting in gapless surface states via bulk-edge correspondence. Exotic phenomena have been realized in ferromagnetic TIs, such as the quantu m anomalous Hall (QAH) effect with a chiral edge conduction and a quantized value of the Hall resistance ${R_{yx}}$. Here, we report on the emergence of distinct topological phases in paramagnetic Fe-doped (Bi,Sb)${_2}$Se${_3}$ heterostructures with varying structure architecture, doping, and magnetic and electric fields. Starting from a 3D-TI, a two-dimensional insulator appears at layer thicknesses below a critical value, which turns into an Anderson insulator for Fe concentrations sufficiently large to produce localization by magnetic disorder. With applying a magnetic field, a topological transition from the Anderson insulator to the QAH state occurs, which is driven by the formation of an exchange gap owing to a giant Zeeman splitting and reduced magnetic disorder. Topological phase diagram of (Bi,Sb)${_2}$Se${_3}$ allows exploration of intricate interplay of topological protection, magnetic disorder, and exchange splitting.
We have utilized time-domain magneto-terahertz spectroscopy to investigate the low frequency optical response of topological insulator Cu$_{0.02}$Bi$_2$Se$_3$ and Bi$_2$Se$_3$ films. With both field and frequency dependence, such experiments give suf ficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu$_{0.02}$Bi$_2$Se$_3$ induces a true bulk insulator with only a textit{single} type of conduction with total sheet carrier density $sim4.9times10^{12}/$cm$^{2}$ and mobility as high as 4000 cm$^{2}/$V$cdot$s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on top and bottom of the film with a chemical potential $sim$145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero field Drude conductance. In contrast, in normal Bi$_2$Se$_3$ films two conduction channels were observed and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk/2DEG states. Our high-resolution Faraday rotation spectroscopy on Cu$_{0.02}$Bi$_2$Se$_3$ paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push chemical potential in the lowest Landau Level.
We present a combined experimental and theoretical study of the surface vibrational modes of the topological insulator (TI) Bi$_2$Se$_3$ with particular emphasis on the low-energy region below 10 meV that has been difficult to resolve experimentally. By applying inelastic helium atom scattering (HAS), the entire phonon dispersion was determined and compared with density functional perturbation theory (DFPT) calculations. The intensity of the phonon modes is dominated by a strong Rayleigh mode, in contrast to previous experimental works. Moreover, also at variance with recent reports, no Kohn-anomaly is observed. These observations are in excellent agreement with DFPT calculations. Besides these results, the experimental data reveal$-$via bound-state resonance enhancement$-$two additional dispersion curves in the gap below the Rayleigh mode. They are possibly associated with an excitation of a surface electron density superstructure that we observe in HAS diffraction patterns. The electron-phonon coupling paramenter $lambda$ = 0.23 derived from our temperature dependent Debye-Waller measurements compares well with values determined by angular resolved photoemission or Landau level spectroscopy. Our work opens up a new perspective for THz measurements on 2D materials as well as the investigation of subtle details (band bending, the presence of quantum well states) with respect to the electron-phonon coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا