ﻻ يوجد ملخص باللغة العربية
What is the role of real-time control and learning in the formation of social conventions? To answer this question, we propose a computational model that matches human behavioral data in a social decision-making game that was analyzed both in discrete-time and continuous-time setups. Furthermore, unlike previous approaches, our model takes into account the role of sensorimotor control loops in embodied decision-making scenarios. For this purpose, we introduce the Control-based Reinforcement Learning (CRL) model. CRL is grounded in the Distributed Adaptive Control (DAC) theory of mind and brain, where low-level sensorimotor control is modulated through perceptual and behavioral learning in a layered structure. CRL follows these principles by implementing a feedback control loop handling the agents reactive behaviors (pre-wired reflexes), along with an adaptive layer that uses reinforcement learning to maximize long-term reward. We test our model in a multi-agent game-theoretic task in which coordination must be achieved to find an optimal solution. We show that CRL is able to reach human-level performance on standard game-theoretic metrics such as efficiency in acquiring rewards and fairness in reward distribution.
Matrix games like Prisoners Dilemma have guided research on social dilemmas for decades. However, they necessarily treat the choice to cooperate or defect as an atomic action. In real-world social dilemmas these choices are temporally extended. Coope
In the process of collectively inventing new words for new concepts in a population, conflicts can quickly become numerous, in the form of synonymy and homonymy. Remembering all of them could cost too much memory, and remembering too few may slow dow
In this article, we study the problem of air-to-ground ultra-reliable and low-latency communication (URLLC) for a moving ground user. This is done by controlling multiple unmanned aerial vehicles (UAVs) in real time while avoiding inter-UAV collision
Collective action demands that individuals efficiently coordinate how much, where, and when to cooperate. Laboratory experiments have extensively explored the first part of this process, demonstrating that a variety of social-cognitive mechanisms inf
Recent research on reinforcement learning in pure-conflict and pure-common interest games has emphasized the importance of population heterogeneity. In contrast, studies of reinforcement learning in mixed-motive games have primarily leveraged homogen