ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the Formation of Social Conventions from Embodied Real-Time Interactions

55   0   0.0 ( 0 )
 نشر من قبل Ismael Tito Freire Gonz\\'alez
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

What is the role of real-time control and learning in the formation of social conventions? To answer this question, we propose a computational model that matches human behavioral data in a social decision-making game that was analyzed both in discrete-time and continuous-time setups. Furthermore, unlike previous approaches, our model takes into account the role of sensorimotor control loops in embodied decision-making scenarios. For this purpose, we introduce the Control-based Reinforcement Learning (CRL) model. CRL is grounded in the Distributed Adaptive Control (DAC) theory of mind and brain, where low-level sensorimotor control is modulated through perceptual and behavioral learning in a layered structure. CRL follows these principles by implementing a feedback control loop handling the agents reactive behaviors (pre-wired reflexes), along with an adaptive layer that uses reinforcement learning to maximize long-term reward. We test our model in a multi-agent game-theoretic task in which coordination must be achieved to find an optimal solution. We show that CRL is able to reach human-level performance on standard game-theoretic metrics such as efficiency in acquiring rewards and fairness in reward distribution.



قيم البحث

اقرأ أيضاً

Matrix games like Prisoners Dilemma have guided research on social dilemmas for decades. However, they necessarily treat the choice to cooperate or defect as an atomic action. In real-world social dilemmas these choices are temporally extended. Coope rativeness is a property that applies to policies, not elementary actions. We introduce sequential social dilemmas that share the mixed incentive structure of matrix game social dilemmas but also require agents to learn policies that implement their strategic intentions. We analyze the dynamics of policies learned by multiple self-interested independent learning agents, each using its own deep Q-network, on two Markov games we introduce here: 1. a fruit Gathering game and 2. a Wolfpack hunting game. We characterize how learned behavior in each domain changes as a function of environmental factors including resource abundance. Our experiments show how conflict can emerge from competition over shared resources and shed light on how the sequential nature of real world social dilemmas affects cooperation.
In the process of collectively inventing new words for new concepts in a population, conflicts can quickly become numerous, in the form of synonymy and homonymy. Remembering all of them could cost too much memory, and remembering too few may slow dow n the overall process. Is there an efficient behavior that could help balance the two? The Naming Game is a multi-agent computational model for the emergence of language, focusing on the negotiation of new lexical conventions, where a common lexicon self-organizes but going through a phase of high complexity. Previous work has been done on the control of complexity growth in this particular model, by allowing agents to actively choose what they talk about. However, those strategies were relying on ad hoc heuristics highly dependent on fine-tuning of parameters. We define here a new principled measure and a new strategy, based on the beliefs of each agent on the global state of the population. The measure does not rely on heavy computation, and is cognitively plausible. The new strategy yields an efficient control of complexity growth, along with a faster agreement process. Also, we show that short-term memory is enough to build relevant beliefs about the global lexicon.
In this article, we study the problem of air-to-ground ultra-reliable and low-latency communication (URLLC) for a moving ground user. This is done by controlling multiple unmanned aerial vehicles (UAVs) in real time while avoiding inter-UAV collision s. To this end, we propose a novel multi-agent deep reinforcement learning (MADRL) framework, coined a graph attention exchange network (GAXNet). In GAXNet, each UAV constructs an attention graph locally measuring the level of attention to its neighboring UAVs, while exchanging the attention weights with other UAVs so as to reduce the attention mismatch between them. Simulation results corroborates that GAXNet achieves up to 4.5x higher rewards during training. At execution, without incurring inter-UAV collisions, GAXNet achieves 6.5x lower latency with the target 0.0000001 error rate, compared to a state-of-the-art baseline framework.
Collective action demands that individuals efficiently coordinate how much, where, and when to cooperate. Laboratory experiments have extensively explored the first part of this process, demonstrating that a variety of social-cognitive mechanisms inf luence how much individuals choose to invest in group efforts. However, experimental research has been unable to shed light on how social cognitive mechanisms contribute to the where and when of collective action. We leverage multi-agent deep reinforcement learning to model how a social-cognitive mechanism--specifically, the intrinsic motivation to achieve a good reputation--steers group behavior toward specific spatial and temporal strategies for collective action in a social dilemma. We also collect behavioral data from groups of human participants challenged with the same dilemma. The model accurately predicts spatial and temporal patterns of group behavior: in this public goods dilemma, the intrinsic motivation for reputation catalyzes the development of a non-territorial, turn-taking strategy to coordinate collective action.
Recent research on reinforcement learning in pure-conflict and pure-common interest games has emphasized the importance of population heterogeneity. In contrast, studies of reinforcement learning in mixed-motive games have primarily leveraged homogen eous approaches. Given the defining characteristic of mixed-motive games--the imperfect correlation of incentives between group members--we study the effect of population heterogeneity on mixed-motive reinforcement learning. We draw on interdependence theory from social psychology and imbue reinforcement learning agents with Social Value Orientation (SVO), a flexible formalization of preferences over group outcome distributions. We subsequently explore the effects of diversity in SVO on populations of reinforcement learning agents in two mixed-motive Markov games. We demonstrate that heterogeneity in SVO generates meaningful and complex behavioral variation among agents similar to that suggested by interdependence theory. Empirical results in these mixed-motive dilemmas suggest agents trained in heterogeneous populations develop particularly generalized, high-performing policies relative to those trained in homogeneous populations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا