ترغب بنشر مسار تعليمي؟ اضغط هنا

Social diversity and social preferences in mixed-motive reinforcement learning

147   0   0.0 ( 0 )
 نشر من قبل Kevin McKee
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent research on reinforcement learning in pure-conflict and pure-common interest games has emphasized the importance of population heterogeneity. In contrast, studies of reinforcement learning in mixed-motive games have primarily leveraged homogeneous approaches. Given the defining characteristic of mixed-motive games--the imperfect correlation of incentives between group members--we study the effect of population heterogeneity on mixed-motive reinforcement learning. We draw on interdependence theory from social psychology and imbue reinforcement learning agents with Social Value Orientation (SVO), a flexible formalization of preferences over group outcome distributions. We subsequently explore the effects of diversity in SVO on populations of reinforcement learning agents in two mixed-motive Markov games. We demonstrate that heterogeneity in SVO generates meaningful and complex behavioral variation among agents similar to that suggested by interdependence theory. Empirical results in these mixed-motive dilemmas suggest agents trained in heterogeneous populations develop particularly generalized, high-performing policies relative to those trained in homogeneous populations.



قيم البحث

اقرأ أيضاً

Matrix games like Prisoners Dilemma have guided research on social dilemmas for decades. However, they necessarily treat the choice to cooperate or defect as an atomic action. In real-world social dilemmas these choices are temporally extended. Coope rativeness is a property that applies to policies, not elementary actions. We introduce sequential social dilemmas that share the mixed incentive structure of matrix game social dilemmas but also require agents to learn policies that implement their strategic intentions. We analyze the dynamics of policies learned by multiple self-interested independent learning agents, each using its own deep Q-network, on two Markov games we introduce here: 1. a fruit Gathering game and 2. a Wolfpack hunting game. We characterize how learned behavior in each domain changes as a function of environmental factors including resource abundance. Our experiments show how conflict can emerge from competition over shared resources and shed light on how the sequential nature of real world social dilemmas affects cooperation.
Mobile robot navigation has seen extensive research in the last decades. The aspect of collaboration with robots and humans sharing workspaces will become increasingly important in the future. Therefore, the next generation of mobile robots needs to be socially-compliant to be accepted by their human collaborators. However, a formal definition of compliance is not straightforward. On the other hand, empowerment has been used by artificial agents to learn complicated and generalized actions and also has been shown to be a good model for biological behaviors. In this paper, we go beyond the approach of classical acf{RL} and provide our agent with intrinsic motivation using empowerment. In contrast to self-empowerment, a robot employing our approach strives for the empowerment of people in its environment, so they are not disturbed by the robots presence and motion. In our experiments, we show that our approach has a positive influence on humans, as it minimizes its distance to humans and thus decreases human travel time while moving efficiently towards its own goal. An interactive user-study shows that our method is considered more social than other state-of-the-art approaches by the participants.
In consumer search, there is a set of items. An agent has a prior over her value for each item and can pay a cost to learn the instantiation of her value. After exploring a subset of items, the agent chooses one and obtains a payoff equal to its valu e minus the search cost. We consider a sequential model of consumer search in which agents values are correlated and each agent updates her priors based on the exploration of past agents before performing her search. Specifically, we assume the value is the sum of a common-value component, called the quality, and a subjective score. Fixing the variance of the total value, we say a population is more diverse if the subjective score has a larger variance. We ask how diversity impacts average utility. We show that intermediate diversity levels yield significantly higher social utility than the extreme cases of no diversity (when agents under-explore) or full diversity (when agents are unable to learn from each other) and quantify how the impact of the diversity level changes depending on the time spent searching.
Social learning is a key component of human and animal intelligence. By taking cues from the behavior of experts in their environment, social learners can acquire sophisticated behavior and rapidly adapt to new circumstances. This paper investigates whether independent reinforcement learning (RL) agents in a multi-agent environment can learn to use social learning to improve their performance. We find that in most circumstances, vanilla model-free RL agents do not use social learning. We analyze the reasons for this deficiency, and show that by imposing constraints on the training environment and introducing a model-based auxiliary loss we are able to obtain generalized social learning policies which enable agents to: i) discover complex skills that are not learned from single-agent training, and ii) adapt online to novel environments by taking cues from experts present in the new environment. In contrast, agents trained with model-free RL or imitation learning generalize poorly and do not succeed in the transfer tasks. By mixing multi-agent and solo training, we can obtain agents that use social learning to gain skills that they can deploy when alone, even out-performing agents trained alone from the start.
We discuss the connection between computational social choice (comsoc) and computational complexity. We stress the work so far on, and urge continued focus on, two less-recognized aspects of this connection. Firstly, this is very much a two-way stree t: Everyone knows complexity classification is used in comsoc, but we also highlight benefits to complexity that have arisen from its use in comsoc. Secondly, more subtle, less-known complexity tools often can be very productively used in comsoc.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا