ﻻ يوجد ملخص باللغة العربية
The level structure of nuclei offers a large amount and variety of information to improve our knowledge of the strong interaction and of mesoscopic quantum systems. Gamma spectroscopy is a powerful tool to perform such studies: modern gamma multi-detectors present increasing performances in terms of sensitivity and efficiency, allowing to extend ever more our ability to observe and characterize abundant nuclear states. For instance, the high-spin part of level schemes often reflects intriguing nuclear shape phenomena: this behaviour is unveiled by high-fold experimental data analysed through multi-coincidence spectra, in which long deexcitation cascades become observable. Determining the intensity of newly discovered transitions is important to characterize the nuclear structure and formation mechanism of the emitting levels. However, it is not trivial to relate the apparent intensity observed in multi-gated spectra to the actual transition intensity. In this work, we introduce the basis of a formalism affiliated with graph theory: we have obtained analytic expressions from which data-analysis methods can eventually be derived to recover this link in a rigorous way.
An increasing demand of environmental radioactivity monitoring comes both from the scientific community and from the society. This requires accurate, reliable and fast response preferably from portable radiation detectors. Thanks to recent improvemen
Airborne gamma-ray surveys are useful for many applications, ranging from geology and mining to public health and nuclear security. In all these contexts, the ability to decompose a measured spectrum into a linear combination of background source ter
The Shape method, a novel approach to obtain the functional form of the $gamma$-ray strength function ($gamma$SF) in the absence of neutron resonance spacing data, is introduced. When used in connection with the Oslo method the slope of the Nuclear L
The models and weights of prior trained Convolutional Neural Networks (CNN) created to perform automated isotopic classification of time-sequenced gamma-ray spectra, were utilized to provide source domain knowledge as training on new domains of poten
Neutron direct-geometry time-of-flight chopper spectroscopy is instrumental in studying fundamental excitations of vibrational and/or magnetic origin. We report here that techniques in super-resolution optical imagery (which is in real-space) can be