ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimension dependence of factorization problems: bi-parameter Hardy spaces

82   0   0.0 ( 0 )
 نشر من قبل Richard Lechner
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Richard Lechner




اسأل ChatGPT حول البحث

Given $1 leq p,q < infty$ and $ninmathbb{N}_0$, let $H_n^p(H_n^q)$ denote the canonical finite-dimensional bi-parameter dyadic Hardy space. Let $(V_n : ninmathbb{N}_0)$ denote either $bigl(H_n^p(H_n^q) : ninmathbb{N}_0bigr)$ or $bigl( (H_n^p(H_n^q))^* : ninmathbb{N}_0bigr)$. We show that the identity operator on $V_n$ factors through any operator $T : V_Nto V_N$ which has large diagonal with respect to the Haar system, where $N$ depends emph{linearly} on $n$.



قيم البحث

اقرأ أيضاً

85 - Richard Lechner 2016
Let $1leq p,q < infty$ and $1leq r leq infty$. We show that the direct sum of mixed norm Hardy spaces $big(sum_n H^p_n(H^q_n)big)_r$ and the sum of their dual spaces $big(sum_n H^p_n(H^q_n)^*big)_r$ are both primary. We do so by using Bourgains local ization method and solving the finite dimensional factorization problem. In particular, we obtain that the spaces $big(sum_{nin mathbb N} H_n^1(H_n^s)big)_r$, $big(sum_{nin mathbb N} H_n^s(H_n^1)big)_r$, as well as $big(sum_{nin mathbb N} BMO_n(H_n^s)big)_r$ and $big(sum_{nin mathbb N} H^s_n(BMO_n)big)_r$, $1 < s < infty$, $1leq r leq infty$, are all primary.
In this note we give several characterisations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardys original inequality. We give examples obtaining new weighted Hardy inequalities on $mathbb R^n$, on homogeneous groups, on hyperbolic spaces, and on Cartan-Hadamard manifolds.
146 - Xiaofen Lv , Jordi Pau 2021
We completely characterize those positive Borel measures $mu$ on the unit ball $mathbb{B}_ n$ such that the Carleson embedding from Hardy spaces $H^p$ into the tent-type spaces $T^q_ s(mu)$ is bounded, for all possible values of $0<p,q,s<infty$.
86 - Yongjiang Duan , Siyu Wang , 2021
Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration o perators [ J_{g}(f)(z)=int_{0}^{z}f(lambda)g(lambda)dlambda ] between weighted Bergman spaces $L_{a}^{p}(omega )$ induced by $mathcal{D}$ weights and Hardy spaces $H^{q}$ for $0<p,q<infty$.
151 - Guangfu Cao , Li He , 2017
For a pointwise multiplier $varphi$ of the Hardy-Sobolev space $H^2_beta$ on the open unit ball $bn$ in $cn$, we study spectral properties of the multiplication operator $M_varphi: H^2_betato H^2_beta$. In particular, we compute the spectrum and esse ntial spectrum of $M_varphi$ and develop the Fredholm theory for these operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا