ﻻ يوجد ملخص باللغة العربية
Given $1 leq p,q < infty$ and $ninmathbb{N}_0$, let $H_n^p(H_n^q)$ denote the canonical finite-dimensional bi-parameter dyadic Hardy space. Let $(V_n : ninmathbb{N}_0)$ denote either $bigl(H_n^p(H_n^q) : ninmathbb{N}_0bigr)$ or $bigl( (H_n^p(H_n^q))^* : ninmathbb{N}_0bigr)$. We show that the identity operator on $V_n$ factors through any operator $T : V_Nto V_N$ which has large diagonal with respect to the Haar system, where $N$ depends emph{linearly} on $n$.
Let $1leq p,q < infty$ and $1leq r leq infty$. We show that the direct sum of mixed norm Hardy spaces $big(sum_n H^p_n(H^q_n)big)_r$ and the sum of their dual spaces $big(sum_n H^p_n(H^q_n)^*big)_r$ are both primary. We do so by using Bourgains local
In this note we give several characterisations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are
We completely characterize those positive Borel measures $mu$ on the unit ball $mathbb{B}_ n$ such that the Carleson embedding from Hardy spaces $H^p$ into the tent-type spaces $T^q_ s(mu)$ is bounded, for all possible values of $0<p,q,s<infty$.
Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration o
For a pointwise multiplier $varphi$ of the Hardy-Sobolev space $H^2_beta$ on the open unit ball $bn$ in $cn$, we study spectral properties of the multiplication operator $M_varphi: H^2_betato H^2_beta$. In particular, we compute the spectrum and esse