ﻻ يوجد ملخص باللغة العربية
Triplet excitons have been the focus of considerable attention with regards to the functioning of polymer solar cells, because these species are long-lived and quench subsequently generated singlet excitons in their vicinity. The role of triplets in poly(3-hexylthiophene) (P3HT) has been investigated extensively with contrary conclusions regarding their importance. We probe the various roles triplets can play in P3HT by analyzing the photoluminescence (PL) from isolated single-chain aggregates and multi-chain mesoscopic aggregates. Solvent vapor annealing allows deterministic growth of P3HT aggregates consisting of ~20 chains, which exhibit red-shifted and broadened PL compared to single-chain aggregates. The multi-chain aggregates exhibit a decrease of photon antibunching contrast compared to single-chain aggregates, implying rather weak interchain excitonic coupling and energy transfer. Nevertheless, the influence of triplet-quenching oxygen on PL and a photon correlation analysis of aggregate PL reveal that triplets are quenched by intermolecular interactions in the bulk state.
Control of chain length and morphology in combination with single-molecule spectroscopy techniques provide a comprehensive photophysical picture of excited-state losses in the prototypical conjugated polymer poly(3-hexylthiophene) (P3HT). A universal
The spectral breadth of conjugated polymers gives these materials a clear advantage over other molecular compounds for organic photovoltaic applications and is a key factor in recent efficiencies topping 10%. But why do excitonic transitions, which a
An appealing definition of the term molecule arises from consideration of the nature of fluorescence, with discrete molecular entities emitting a stream of single photons. We address the question of how large a molecular object may become by growing
Blinking of the photoluminescence (PL) emitted from individual conjugated polymer chains is one of the central observations made by single-molecule spectroscopy (SMS). Important information, e.g., regarding excitation energy transfer, can be extracte
Coherent dynamics of coupled molecules are effectively characterized by the two-dimensional (2D) electronic coherent spectroscopy. Depending on the coupling between electronic and vibrational states, oscillating signals of purely electronic, purely v