ترغب بنشر مسار تعليمي؟ اضغط هنا

Distinctive character of electronic and vibrational coherences in disordered molecular aggregates

163   0   0.0 ( 0 )
 نشر من قبل Vytautas Butkus
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coherent dynamics of coupled molecules are effectively characterized by the two-dimensional (2D) electronic coherent spectroscopy. Depending on the coupling between electronic and vibrational states, oscillating signals of purely electronic, purely vibrational or mixed origin can be observed. Even in the mixed molecular systems two types of coherent beats having either electronic or vibrational character can be distinguished by analyzing oscillation Fourier maps, constructed from time-resolved 2D spectra. The amplitude of the beatings with the electronic character is heavily affected by the energetic disorder and consequently electronic coherences are quickly dephased. Beatings with the vibrational character depend weakly on the disorder, assuring their long-time survival. We show that detailed modeling of 2D spectroscopy signals of molecular aggregates providesdirect information on the origin of the coherent beatings.



قيم البحث

اقرأ أيضاً

The two-dimensional spectroscopy has recently revealed oscillatory behavior of excitation dynamics in molecular systems. However, in the majority of cases it is strongly debated if excitonic or vibrational wavepackets, or evidences of quantum transpo rt have been observed. In this letter, the method for distinguishing between vibrational and excitonic wavepacket motion is presented, based on the phase and amplitude relationships of oscillations of distinct peaks, which has been revealed using fundamental analysis of two-dimensional spectrum of two representative systems.
A general theory of electronic excitations in aggregates of molecules coupled to intramolecular vibrations and the harmonic environment is developed for simulation of the third-order nonlinear spectroscopy signals. The model is applied in studies of the time-resolved two-dimensional coherent spectra of four characteristic model systems: weakly / strongly vibronically coupled molecular dimers coupled to high / low frequency intramolecular vibrations. The results allow us to classify the typical spectroscopic features as well as to define the limiting cases, when the long-lived quantum coherences are present due to vibrational lifetime borrowing, when the complete exciton-vibronic mixing occurs and when separation of excitonic and vibrational coherences is proper.
Quantum coherence is highly involved in photochemical functioning of complex molecular systems. Co-existence and intermixing of electronic and/or vibrational coherences, while never unambiguously identified experimentally, has been proposed to be res ponsible for this phenomenon. Analysis of multidimensional spectra of a synthetic belt-shaped molecular six-porphyrin nanoring with an inner template clearly shows a great diversity of separable electronic, vibrational and mixed coherences and their cooperation shaping the optical response. The results yield clear assignment of electronic and vibronic states, estimation of excitation transfer rates, and decoherence times. Theoretical considerations prove that the complexity of excitation dynamics and spectral features of the nanoring excitation spectrum is due to combined effect of cyclic symmetry, small geometrical deformations, and vibronic coupling.
The effect of nuclear dynamics and conical intersections on electronic coherences is investigated employing a two-state, two-mode linear vibronic coupling model. Exact quantum dynamical calculations are performed using the multi-configuration time-de pendent Hartree method (MCTDH). It is found that the presence of a non-adiabatic coupling close to the Franck-Condon point can preserve electronic coherence to some extent. Additionally, the possibility of steering the nuclear wavepackets by imprinting a relative phase between the electronic states during the photoionization process is discussed. It is found that the steering of nuclear wavepackets is possible given that a coherent electronic wavepacket embodying the phase difference passes through a conical intersection. A conical intersection close to the Franck-Condon point is thus a necessary prerequisite for control, providing a clear path towards attochemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا