ﻻ يوجد ملخص باللغة العربية
Coherent dynamics of coupled molecules are effectively characterized by the two-dimensional (2D) electronic coherent spectroscopy. Depending on the coupling between electronic and vibrational states, oscillating signals of purely electronic, purely vibrational or mixed origin can be observed. Even in the mixed molecular systems two types of coherent beats having either electronic or vibrational character can be distinguished by analyzing oscillation Fourier maps, constructed from time-resolved 2D spectra. The amplitude of the beatings with the electronic character is heavily affected by the energetic disorder and consequently electronic coherences are quickly dephased. Beatings with the vibrational character depend weakly on the disorder, assuring their long-time survival. We show that detailed modeling of 2D spectroscopy signals of molecular aggregates providesdirect information on the origin of the coherent beatings.
The two-dimensional spectroscopy has recently revealed oscillatory behavior of excitation dynamics in molecular systems. However, in the majority of cases it is strongly debated if excitonic or vibrational wavepackets, or evidences of quantum transpo
A general theory of electronic excitations in aggregates of molecules coupled to intramolecular vibrations and the harmonic environment is developed for simulation of the third-order nonlinear spectroscopy signals. The model is applied in studies of
Quantum coherence is highly involved in photochemical functioning of complex molecular systems. Co-existence and intermixing of electronic and/or vibrational coherences, while never unambiguously identified experimentally, has been proposed to be res
The effect of nuclear dynamics and conical intersections on electronic coherences is investigated employing a two-state, two-mode linear vibronic coupling model. Exact quantum dynamical calculations are performed using the multi-configuration time-de