ﻻ يوجد ملخص باللغة العربية
We describe a strategy for rigorous arbitrary-precision evaluation of Legendre polynomials on the unit interval and its application in the generation of Gauss-Legendre quadrature rules. Our focus is on making the evaluation practical for a wide range of realistic parameters, corresponding to the requirements of numerical integration to an accuracy of about 100 to 100 000 bits. Our algorithm combines the summation by rectangular splitting of several types of expansions in terms of hypergeometric series with a fixed-point implementation of Bonnets three-term recurrence relation. We then compute rigorous enclosures of the Gauss-Legendre nodes and weights using the interval Newton method. We provide rigorous error bounds for all steps of the algorithm. The approach is validated by an implementation in the Arb library, which achieves order-of-magnitude speedups over previous code for computing Gauss-Legendre rules with simultaneous high degree and precision.
The detection of insufficiently resolved or ill-conditioned integrand structures is critical for the reliability assessment of the quadrature rule outputs. We discuss a method of analysis of the profile of the integrand at the quadrature knots which
Gaussian elimination with full pivoting generates a PLUQ matrix decomposition. Depending on the strategy used in the search for pivots, the permutation matrices can reveal some information about the row or the column rank profiles of the matrix. We p
The real symmetric tridiagonal eigenproblem is of outstanding importance in numerical computations; it arises frequently as part of eigensolvers for standard and generalized dense Hermitian eigenproblems that are based on a reduction to tridiagonal f
In this work, we present a collocation method based on the Legendre wavelet combined with the Gauss--Jacobi quadrature formula for solving a class of fractional delay-type integro-differential equations. The problem is considered with either initial
ODE Test Problems (OTP) is an object-oriented MATLAB package offering a broad range of initial value problems which can be used to test numerical methods such as time integration methods and data assimilation (DA) methods. It includes problems that a