ﻻ يوجد ملخص باللغة العربية
Multi-image alignment, bringing a group of images into common register, is an ubiquitous problem and the first step of many applications in a wide variety of domains. As a result, a great amount of effort is being invested in developing efficient multi-image alignment algorithms. Little has been done, however, to answer fundamental practical questions such as: what is the comparative performance of existing methods? is there still room for improvement? under which conditions should one technique be preferred over another? does adding more images or prior image information improve the registration results? In this work, we present a thorough analysis and evaluation of the main multi-image alignment methods which, combined with theoretical limits in multi-image alignment performance, allows us to organize them under a common framework and provide practical answers to these essential questions.
Real-world decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a singl
With deep learning becoming the dominant approach in computer vision, the use of representations extracted from Convolutional Neural Nets (CNNs) is quickly gaining ground on Fisher Vectors (FVs) as favoured state-of-the-art global image descriptors f
The SMEFTsim package is designed to enable automated computations in the Standard Model Effective Field Theory (SMEFT), where the SM Lagrangian is extended with a complete basis of dimension six operators. It contains a set of models written in FeynR
In this guide, we present how to perform constraint-based causal discovery using three popular software packages: pcalg (with add-ons tpc and micd), bnlearn, and TETRAD. We focus on how these packages can be used with observational data and in the pr
We propose the first practical learned lossless image compression system, L3C, and show that it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000. At the core of our method is a fully parallelizable hierarchical probabilistic model f