ﻻ يوجد ملخص باللغة العربية
Work package 2 (WP2) aims to develop libraries for energy-efficient inter-process communication and data sharing on the EXCESS platforms. The Deliverable D2.4 reports on the final prototype of programming abstractions for energy-efficient inter- process communication. Section 1 is the updated overview of the prototype of programming abstraction and devised power/energy models. The Section 2-6 contain the latest results of the four studies: i) GreenBST, a energy-efficient and concurrent search tree (cf. Section 2) ii) Customization methodology for implementation of streaming aggregation in embedded systems (cf. Section 3) iii) Energy Model on CPU for Lock-free Data-structures in Dynamic Environments (cf. Section 4.10) iv) A General and Validated Energy Complexity Model for Multithreaded Algorithms (cf. Section 5)
This deliverable reports the results of white-box methodologies and early results of the first prototype of libraries and programming abstractions as available by project month 18 by Work Package 2 (WP2). It reports i) the latest results of Task 2.2
Despite the stringent requirements of a real-time system, the reliance of the Robot Operating System (ROS) on the loopback network interface imposes a considerable overhead on the transport of high bandwidth data, while the nodelet package, which is
Applications in many domains require processing moving object trajectories. In this work, we focus on a trajectory similarity search that finds all trajectories within a given distance of a query trajectory over a time interval, which we call the dis
PLACES 2016 (full title: Programming Language Approaches to Concurrency- and Communication-Centric Software) is the ninth edition of the PLACES workshop series. After the first PLACES, which was affiliated to DisCoTec in 2008, the workshop has been p
Programming models for building large-scale distributed applications assist the developer in reasoning about consistency and distribution. However, many of the programming models for weak consistency, which promise the largest scalability gains, have