ترغب بنشر مسار تعليمي؟ اضغط هنا

The Infrared Medium-deep Survey. IV. Low Eddington Ratio of A Faint Quasar at $zsim6$: Not Every Supermassive Black Hole is Growing Fast in the Early Universe

71   0   0.0 ( 0 )
 نشر من قبل Yongjung Kim
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To date, most of the luminous quasars known at $zsim6$ have been found to be in maximal accretion with the Eddington ratios, $lambda_{rm{Edd}}sim1$, suggesting enhanced nuclear activities in the early universe. However, this may not be the whole picture of supermassive black hole (SMBH) growth since previous studies have not reached on faint quasars that are more likely to harbor SMBHs with low $lambda_{rm{Edd}}$. To gain a better understanding on the accretion activities in quasars in the early universe, we obtained a deep near-infrared (NIR) spectrum of a quasar, IMS J220417.92+011144.8 (hereafter IMS J2204+0112), one of the faintest quasars that have been identified at $zsim6$. From the redshifted C IV $lambda 1549$ emission line in the NIR spectrum, we find that IMS J2204+0112 harbors a SMBH with about a billion solar mass and $lambda_{rm{Edd}} sim 0.1$, but with a large uncertainty in both quantities (0.41 dex). IMS J2204+0112 has one of the lowest Eddington ratios among quasars at $zsim6$, but a common value among quasars at $zsim2$. Its low $lambda_{rm{Edd}}$ can be explained with two scenarios; the SMBH growth from a stellar mass black hole through short-duration super-Eddington accretion events or from a massive black hole seed ($sim10^{5},M_{odot}$) with Eddington-limited accretion. NIR spectra of more faint quasars are needed to better understand the accretion activities of SMBHs at $z sim 6$.



قيم البحث

اقرأ أيضاً

We present the analysis of a new near-infrared (NIR) spectrum of a recently discovered $z=6.621$ quasar PSO J006+39 in an attempt to explore the early growth of supermassive black holes (SMBHs). This NIR (rest-frame ultraviolet, UV) spectrum shows bl ue continuum slope and rich metal emission lines in addition to Ly$alpha$ line. We utilize the MgII line width and the rest frame luminosity $L_text{3000AA}$ to find the mass of SMBH ($M_text{BH}$) to be $sim 10^8 M_odot$, making this one of the lowest mass quasars at high redshift. The power-law slope index ($alpha_lambda$) of the continuum emission is $-2.94pm0.03$, significantly bluer than the slope of $alpha_lambda=-7/3$ predicted from standard thin disc models. We fit the spectral energy distribution (SED) using a model which can fit local SMBHs, which includes warm and hot Comptonisation powered by the accretion flow as well as an outer standard disc. The result shows that the very blue slope is probably produced by a small radial ($sim230$ gravitational radius, $R_text{g}$) extent of the standard accretion disc. All plausible SED models require that the source is super-Eddington ($L_text{bol}/L_text{Edd} gtrsim 9$), so the apparently small disc may simply be the inner funnel of a puffed up flow, and clearly the SMBH in this quasar is in a rapid growth phase. We also utilize the rest-frame UV emission lines to probe the chemical abundance in the broad line region (BLR) of this quasar. We find that this quasar has super solar metallicity through photoionization model calculations.
77 - H. Ikeda , T. Nagao , K. Matsuoka 2017
We present the result of our spectroscopic follow-up observation for faint quasar candidates at z~5 in a part of the Canada-France-Hawaii Telescope Legacy Survey wide field. We select nine photometric candidates and identify three z~5 faint quasars, one z~4 faint quasar, and a late-type star. Since two faint quasar spectra show Civ emission line without suffering from a heavy atmospheric absorption, we estimate the black hole mass (M$_{BH}$) and Eddington ratio (L/L$_{Edd}$) of them. The inferred log M$_{BH}$ are 9.04+/-0.14 and 8.53+/-0.20, respectively. In addition, the inferred log (L/L$_{Edd}$) are -1.00+/-0.15 and -0.42+/-0.22, respectively. If we adopt that L/L$_{Edd}$= constant or $propto$ (1+z)^2, the seed black hole masses (M$_{seed}$) of our z~5 faint quasars are expected to be >10^5 M$_odot$ in most cases. We also compare the observational results with a mass accretion model where angular momentum is lost due to supernova explosions (Kawakatu & Wada 2008). Accordingly, M$_{BH}$ of the z~5 faint quasars in our sample can be explained even if M$_{seed}$ is ~10^3M$_odot$. Since z~6 luminous qusars and our z~5 faint quasars are not on the same evolutionary track, z~6 luminous quasars and our z~5 quasars are not the same populations but different populations, due to the difference of a period of the mass supply from host galaxies. Furthermore, we confirm that one can explain M$_{BH}$ of z~6 luminous quasars and our z~5 faint quasars even if their seed black holes of them are formed at z~7.
Faint $zsim5$ quasars with $M_{1450}sim-23$ mag are known to be the potentially important contributors to the ultraviolet ionizing background in the post-reionization era. However, their number density has not been well determined, making it difficul t to assess their role in the early ionization of the intergalactic medium (IGM). In this work, we present the updated results of our $zsim5$ quasar survey using the Infrared Medium-deep Survey (IMS), a near-infrared imaging survey covering an area of 85 deg$^{2}$. From our spectroscopic observations with the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South 8 m Telescope, we discovered eight new quasars at $zsim5$ with $-26.1leq M_{1450} leq -23.3$. Combining our IMS faint quasars ($M_{1450}>-27$ mag) with the brighter Sloan Digital Sky Survey (SDSS) quasars ($M_{1450}<-27$ mag), we derive the $zsim5$ quasar luminosity function (QLF) without any fixed parameters down to the magnitude limit of $M_{1450}=-23$ mag. We find that the faint-end slope of the QLF is very flat ($alpha=-1.2^{+1.4}_{-0.6}$), with a characteristic luminosity of $M^{*}_{1450}=-25.8^{+1.4}_{-1.1}$ mag. The number density of $zsim5$ quasars from the QLF gives an ionizing emissivity at 912 $unicode{x212B}$ of $epsilon_{912}=(3.7$--$7.1)times10^{23}$ erg s$^{-1}$ Hz$^{-1}$ Mpc$^{-3}$ and an ionizing photon density of $dot{n}_{rm ion}=(3.0$--$5.7)times10^{49}$ Mpc$^{-3}$ s$^{-1}$. These results imply that quasars are responsible for only 10-20% (up to 50% even in the extreme case) of the photons required to completely ionize the IGM at $zsim5$, disfavoring the idea that quasars alone could have ionized the IGM at $zsim5$.
346 - T. Liu , S. Gezari , M. Ayers 2019
We present a systematic search for periodically varying quasar and supermassive black hole binary (SMBHB) candidates in the Pan-STARRS1 Medium Deep Survey. From $sim9,000$ color-selected quasars in a $sim50$ deg$^{2}$ sky area, we initially identify $26$ candidates with more than $1.5$ cycles of variation. We extend the baseline of observations via our imaging campaign with the Discovery Channel Telescope and the Las Cumbres Observatory network and reevaluate the candidates using a more rigorous, maximum likelihood method. Using a range of statistical criteria and assuming the Damped Random Walk model for normal quasar variability, we identify one statistically significant periodic candidate. We also investigate the capabilities of detecting SMBHBs by the Large Synoptic Survey Telescope using our study with MDS as a benchmark and explore any complementary, multiwavelength evidence for SMBHBs in our sample.
During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form a supermassive black hole binary; this binary can eject stars via 3-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone -- this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the the SMBH evolution is independent of N for an axis ratio of c/a=0.8, and that the SMBH binary separation reaches the gravitational radiation regime for c/a=0.75.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا