ترغب بنشر مسار تعليمي؟ اضغط هنا

An Optically Faint Quasar Survey at z~5 in the CFHTLS Wide Field: Estimates of the Black Hole Masses and Eddington Ratios

78   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Ikeda
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the result of our spectroscopic follow-up observation for faint quasar candidates at z~5 in a part of the Canada-France-Hawaii Telescope Legacy Survey wide field. We select nine photometric candidates and identify three z~5 faint quasars, one z~4 faint quasar, and a late-type star. Since two faint quasar spectra show Civ emission line without suffering from a heavy atmospheric absorption, we estimate the black hole mass (M$_{BH}$) and Eddington ratio (L/L$_{Edd}$) of them. The inferred log M$_{BH}$ are 9.04+/-0.14 and 8.53+/-0.20, respectively. In addition, the inferred log (L/L$_{Edd}$) are -1.00+/-0.15 and -0.42+/-0.22, respectively. If we adopt that L/L$_{Edd}$= constant or $propto$ (1+z)^2, the seed black hole masses (M$_{seed}$) of our z~5 faint quasars are expected to be >10^5 M$_odot$ in most cases. We also compare the observational results with a mass accretion model where angular momentum is lost due to supernova explosions (Kawakatu & Wada 2008). Accordingly, M$_{BH}$ of the z~5 faint quasars in our sample can be explained even if M$_{seed}$ is ~10^3M$_odot$. Since z~6 luminous qusars and our z~5 faint quasars are not on the same evolutionary track, z~6 luminous quasars and our z~5 quasars are not the same populations but different populations, due to the difference of a period of the mass supply from host galaxies. Furthermore, we confirm that one can explain M$_{BH}$ of z~6 luminous quasars and our z~5 faint quasars even if their seed black holes of them are formed at z~7.



قيم البحث

اقرأ أيضاً

152 - Juna A. Kollmeier 2005
We study the distribution of Eddington luminosity ratios, L_bol/L_edd, of active galactic nuclei (AGNs) discovered in the AGN and Galaxy Evolution Survey (AGES). We combine H-beta, MgII, and CIV line widths with continuum luminosities to estimate bla ck hole (BH) masses in 407 AGNs, covering the redshift range z~0.3-4 and the bolometric luminosity range L_bol~10^45-10^47 erg/s. The sample consists of X-ray or mid-infrared (24 micron) point sources with optical magnitude R<=21.5 mag and optical emission line spectra characteristic of AGNs. For the range of luminosity and redshift probed by AGES, the distribution of estimated Eddington ratios is well described as log-normal with a peak at L_bol/L_edd ~ 1/4 and a dispersion of 0.3 dex. Since additional sources of scatter are minimal, this dispersion must account for contributions from the scatter between estimated and true BH mass and the scatter between estimated and true bolometric luminosity. Therefore, we conclude that: (1) neither of these sources of error can contribute more than ~0.3 dex rms; and (2) the true Eddington ratios of optically luminous AGNs are even more sharply peaked. Because the mass estimation errors must be smaller than ~0.3 dex, we can also investigate the distribution of Eddington ratios at fixed BH mass. We show for the first time that the distribution of Eddington ratios at fixed BH mass is peaked, and that the dearth of AGNs at a factor ~10 below Eddington is real and not an artifact of sample selection. These results provide strong evidence that supermassive BHs gain most of their mass while radiating close to the Eddington limit, and they suggest that the fueling rates in luminous AGNs are ultimately determined by BH self-regulation of the accretion flow rather than galactic scale dynamical disturbances.
We present the analysis of a new near-infrared (NIR) spectrum of a recently discovered $z=6.621$ quasar PSO J006+39 in an attempt to explore the early growth of supermassive black holes (SMBHs). This NIR (rest-frame ultraviolet, UV) spectrum shows bl ue continuum slope and rich metal emission lines in addition to Ly$alpha$ line. We utilize the MgII line width and the rest frame luminosity $L_text{3000AA}$ to find the mass of SMBH ($M_text{BH}$) to be $sim 10^8 M_odot$, making this one of the lowest mass quasars at high redshift. The power-law slope index ($alpha_lambda$) of the continuum emission is $-2.94pm0.03$, significantly bluer than the slope of $alpha_lambda=-7/3$ predicted from standard thin disc models. We fit the spectral energy distribution (SED) using a model which can fit local SMBHs, which includes warm and hot Comptonisation powered by the accretion flow as well as an outer standard disc. The result shows that the very blue slope is probably produced by a small radial ($sim230$ gravitational radius, $R_text{g}$) extent of the standard accretion disc. All plausible SED models require that the source is super-Eddington ($L_text{bol}/L_text{Edd} gtrsim 9$), so the apparently small disc may simply be the inner funnel of a puffed up flow, and clearly the SMBH in this quasar is in a rapid growth phase. We also utilize the rest-frame UV emission lines to probe the chemical abundance in the broad line region (BLR) of this quasar. We find that this quasar has super solar metallicity through photoionization model calculations.
91 - A. Mahabal 2005
We present observations of an optically-faint quasar, RD J114816.2+525339, discovered from deep multi-color observations of the field around the z = 6.42 quasar SDSS J1148+5251. The two quasars have a projected separation of 109 arcsec and both are o utliers in r-z versus z-J color-color space. Keck spectroscopy reveals RD J114816.2+525339 to be a broad-absorption line quasar at z = 5.70. With z_AB = 23.0, RD J114816.2+525339 is 3.3 mag fainter than SDSS J1148+5251, making it the faintest quasar known at z>5.5. This object was identified in a survey of ~2.5 square degrees. The implied surface density of quasars at these redshifts and luminosities is broadly consistent with previous extrapolations of the faint end of the quasar luminosity function and supports the idea that active galaxies provide only a minor component of the reionizing ultraviolet flux at these redshifts.
We present the quasar luminosity function at $z sim 5$ derived from the optical wide-field survey data obtained as a part of the Subaru strategic program (SSP) with Hyper Suprime-Cam (HSC). From $sim$81.8 deg$^2$ area in the Wide layer of the HSC-SSP survey, we selected 224 candidates of low-luminosity quasars at $z sim 5$ by adopting the Lyman-break method down to $i = 24.1$ mag. Based on our candidates and spectroscopically-confirmed quasars from the Sloan Digital Sky Survey (SDSS), we derived the quasar luminosity function at $z sim 5$ covering a wide luminosity range of $-28.76 < M_{rm 1450} < -22.32$ mag. We found that the quasar luminosity function is fitted by a double power-law model with a break magnitude of $M^{*}_{1450} = -25.05^{+0.10}_{-0.24}$ mag. The inferred number density of low-luminosity quasars is lower, and the derived faint-end slope, $-1.22^{+0.03}_{-0.10}$, is flatter than those of previous studies at $z sim 5$. A compilation of the quasar luminosity function at $4 leq z leq 6$ from the HSC-SSP suggests that there is little redshift evolution in the break magnitude and in the faint-end slope within this redshift range, although previous studies suggest that the faint-end slope becomes steeper at higher redshifts. The number density of low-luminosity quasars decreases more rapidly from $z sim 5$ to $z sim 6$ than from $z sim 4$ to $z sim 5$.
To date, most of the luminous quasars known at $zsim6$ have been found to be in maximal accretion with the Eddington ratios, $lambda_{rm{Edd}}sim1$, suggesting enhanced nuclear activities in the early universe. However, this may not be the whole pict ure of supermassive black hole (SMBH) growth since previous studies have not reached on faint quasars that are more likely to harbor SMBHs with low $lambda_{rm{Edd}}$. To gain a better understanding on the accretion activities in quasars in the early universe, we obtained a deep near-infrared (NIR) spectrum of a quasar, IMS J220417.92+011144.8 (hereafter IMS J2204+0112), one of the faintest quasars that have been identified at $zsim6$. From the redshifted C IV $lambda 1549$ emission line in the NIR spectrum, we find that IMS J2204+0112 harbors a SMBH with about a billion solar mass and $lambda_{rm{Edd}} sim 0.1$, but with a large uncertainty in both quantities (0.41 dex). IMS J2204+0112 has one of the lowest Eddington ratios among quasars at $zsim6$, but a common value among quasars at $zsim2$. Its low $lambda_{rm{Edd}}$ can be explained with two scenarios; the SMBH growth from a stellar mass black hole through short-duration super-Eddington accretion events or from a massive black hole seed ($sim10^{5},M_{odot}$) with Eddington-limited accretion. NIR spectra of more faint quasars are needed to better understand the accretion activities of SMBHs at $z sim 6$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا