ﻻ يوجد ملخص باللغة العربية
The one-point distribution of the height for the continuum Kardar-Parisi-Zhang (KPZ) equation is determined numerically using the mapping to the directed polymer in a random potential at high temperature. Using an importance sampling approach, the distribution is obtained over a large range of values, down to a probability density as small as 10^{-1000} in the tails. Both short and long times are investigated and compared with recent analytical predictions for the large-deviation forms of the probability of rare fluctuations. At short times the agreement with the analytical expression is spectacular. We observe that the far left and right tails, with exponents 5/2 and 3/2 respectively, are preserved until large time. We present some evidence for the predicted non-trivial crossover in the left tail from the 5/2 tail exponent to the cubic tail of Tracy-Widom, although the details of the full scaling form remains beyond reach.
We study in this series of articles the Kardar-Parisi-Zhang (KPZ) equation $$ partial_t h(t,x)= uDelta h(t,x)+lambda V(| abla h(t,x)|) +sqrt{D}, eta(t,x), qquad xin{mathbb{R}}^d $$ in $dge 1$ dimensions. The forcing term $eta$ in the right-hand side
We present two complementary analytical approaches for calculating the distribution of shortest path lengths in Erdos-Renyi networks, based on recursion equations for the shells around a reference node and for the paths originating from it. The resul
We consider the negative weight percolation (NWP) problem on hypercubic lattice graphs with fully periodic boundary conditions in all relevant dimensions from d=2 to the upper critical dimension d=6. The problem exhibits edge weights drawn from disor
We investigate the mechanism that leads to systematic deviations in cluster Monte Carlo simulations when correlated pseudo-random numbers are used. We present a simple model, which enables an analysis of the effects due to correlations in several typ
We study in the present article the Kardar-Parisi-Zhang (KPZ) equation $$ partial_t h(t,x)= uDelta h(t,x)+lambda | abla h(t,x)|^2 +sqrt{D}, eta(t,x), qquad (t,x)inmathbb{R}_+timesmathbb{R}^d $$ in $dge 3$ dimensions in the perturbative regime, i.e. f