ﻻ يوجد ملخص باللغة العربية
We use the DECaLS DR3 survey photometry matched to the SDSS-III/BOSS DR12 spectroscopic catalog to investigate the morphology and stellar mass-size relation of luminous red galaxies (LRGs) within the CMASS and LOWZ galaxy samples in the redshift range $0.2<z<0.7$. The large majority of both samples is composed of early-type galaxies with De Vaucouleurs profiles, while only less than 20% are late-type exponentials. We calibrate DECaLS effective radii using the higher resolution CFHT/MegaCam observations and optimise the correction for each morphological type. By cross-matching the photometric properties of the early-type population with the Portsmouth stellar mass catalog, we are able to explore the high-mass end of the distribution using a large sample of 313,026 galaxies over 4380 deg$^{2}$. We find a clear correlation between the sizes and the stellar masses of these galaxies, which appears flatter than previous estimates at lower masses. The sizes of these early-type galaxies do not exhibit significant evolution within the BOSS redshift range, but a slightly declining redshift trend is found when these results are combined with $zsim0.1$ SDSS measurements at the high-mass end. The synergy between BOSS and DECaLS has important applications in other fields, including galaxy clustering and weak lensing.
We study the evolution of the luminosity-to-halo mass relation of Luminous Red Galaxies (LRGs). We select a sample of 52 000 LOWZ and CMASS LRGs from the Baryon Oscillation Spectroscopic Survey (BOSS) SDSS-DR10 in the ~450 deg^2 that overlaps with im
We have obtained structural parameters of about 340,000 galaxies from the Kilo Degree Survey (KiDS) in 153 square degrees of data release 1, 2 and 3. We have performed a seeing convolved 2D single Sersic fit to the galaxy images in the 4 photometric
A photometric redshift sample of Luminous Red Galaxies (hereafter LRGs) obtained from The DECam Legacy Survey (DECaLS) is analysed to probe cosmic distances by exploiting the wedge approach of the two-point correlation function. Although the cosmolog
The scatter in the galaxy size versus stellar mass (Mstar) relation gets largely reduced when, rather than the half-mass radius Re, the size at a fixed surface density is used. Here we address why this happens. We show how a reduction is to be expect
Different studies have reported a power-law mass-size relation $M propto R^q$ for ensembles of molecular clouds. In the case of nearby clouds, the index of the power-law $q$ is close to 2. However, for clouds spread all over the Galaxy, indexes large