ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the luminosity-to-halo mass relation of LRGs from a combined SDSS-DR10+RCS2 analysis

334   0   0.0 ( 0 )
 نشر من قبل Edo Van Uitert
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of the luminosity-to-halo mass relation of Luminous Red Galaxies (LRGs). We select a sample of 52 000 LOWZ and CMASS LRGs from the Baryon Oscillation Spectroscopic Survey (BOSS) SDSS-DR10 in the ~450 deg^2 that overlaps with imaging data from the second Red-sequence Cluster Survey (RCS2), group them into bins of absolute magnitude and redshift and measure their weak lensing signals. The source redshift distribution has a median of 0.7, which allows us to study the lensing signal as a function of lens redshift. We interpret the lensing signal using a halo model, from which we obtain the halo masses as well as the normalisations of the mass-concentration relations. We find that the concentration of haloes that host LRGs is consistent with dark matter only simulations once we allow for miscentering or satellites in the modelling. The slope of the luminosity-to-halo mass relation has a typical value of 1.4 and does not change with redshift, but we do find evidence for a change in amplitude: the average halo mass of LOWZ galaxies increases by 25_{-14}^{+16} % between z=0.36 and 0.22 to an average value of 6.43+/-0.52 x 10^13 h70^-1 Msun. If we extend the redshift range using the CMASS galaxies and assume that they are the progenitors of the LOWZ sample, we find that the average mass of LRGs increases by 80^{+39}_{-28} % between z=0.6 and 0.2



قيم البحث

اقرأ أيضاً

We use the DECaLS DR3 survey photometry matched to the SDSS-III/BOSS DR12 spectroscopic catalog to investigate the morphology and stellar mass-size relation of luminous red galaxies (LRGs) within the CMASS and LOWZ galaxy samples in the redshift rang e $0.2<z<0.7$. The large majority of both samples is composed of early-type galaxies with De Vaucouleurs profiles, while only less than 20% are late-type exponentials. We calibrate DECaLS effective radii using the higher resolution CFHT/MegaCam observations and optimise the correction for each morphological type. By cross-matching the photometric properties of the early-type population with the Portsmouth stellar mass catalog, we are able to explore the high-mass end of the distribution using a large sample of 313,026 galaxies over 4380 deg$^{2}$. We find a clear correlation between the sizes and the stellar masses of these galaxies, which appears flatter than previous estimates at lower masses. The sizes of these early-type galaxies do not exhibit significant evolution within the BOSS redshift range, but a slightly declining redshift trend is found when these results are combined with $zsim0.1$ SDSS measurements at the high-mass end. The synergy between BOSS and DECaLS has important applications in other fields, including galaxy clustering and weak lensing.
We describe the luminosity function, based on Sersic fits to the light profiles, of CMASS galaxies at z ~ 0.55. Compared to previous estimates, our Sersic-based reductions imply more luminous, massive galaxies, consistent with the effects of Sersic- rather than Petrosian or de Vaucouleur-based photometry on the Sloan Digital Sky Survey (SDSS) main galaxy sample at z ~ 0.1. This implies a significant revision of the high mass end of the correlation between stellar and halo mass. Inferences about the evolution of the luminosity and stellar mass functions depend strongly on the assumed, and uncertain, k+e corrections. In turn, these depend on the assumed age of the population. Applying k+e corrections taken from fitting the models of Maraston et al. (2009) to the colors of both SDSS and CMASS galaxies, the evolution of the luminosity and stellar mass functions appears impressively passive, provided that the fits are required to return old ages. However, when matched in comoving number- or luminosity-density, the SDSS galaxies are less strongly clustered compared to their counterparts in CMASS. This rules out the passive evolution scenario, and, indeed, any minor merger scenarios which preserve the rank ordering in stellar mass of the population. Potential incompletenesses in the CMASS sample would further enhance this mismatch. Our analysis highlights the virtue of combining clustering measurements with number counts.
65 - J. Singal , J. George , A. Gerber 2016
We determine the 22$mu$m luminosity evolution and luminosity function for quasars from a data set of over 20,000 objects obtained by combining flux-limited Sloan Digital Sky Survey optical and Wide field Infrared Survey Explorer mid-infrared data. We apply methods developed in previous works to access the intrinsic population distributions non-parametrically, taking into account the truncations and correlations inherent in the data. We find that the population of quasars exhibits positive luminosity evolution with redshift in the mid-infrared, but with considerably less mid-infrared evolution than in the optical or radio bands. With the luminosity evolutions accounted for, we determine the density evolution and local mid-infrared luminosity function. The latter displays a sharp flattening at local luminosities below $sim 10^{31}$ erg sec$^{-1}$ Hz$^{-1}$, which has been reported previously at 15 $mu$m for AGN classified as both type-1 and type-2. We calculate the integrated total emission from quasars at 22 $mu$m and find it to be a small fraction of both the cosmic infrared background light and the integrated emission from all sources at this wavelength.
We present COSMOS-Drift And SHift (DASH), a Hubble Space Telescope WFC3 imaging survey of the COSMOS field in the H_160 filter. The survey comprises 456 individual WFC3 pointings corresponding to an area of 0.49 deg^2 (0.66 deg^2 when including archi val data) and reaches a 5 point-source limit of H_160 =25.1 (0.3 aperture). COSMOS-DASH is the widest HST/WFC3 imaging survey in H_160 filter, tripling the extragalactic survey area in the near-infrared at HST resolution. We make the reduced H_160 mosaic available to the community. We use this dataset to measure the sizes of 162 galaxies with log(M_star/M_sun) > 11.3 at 1.5 < z < 3.0, and augment this sample with 748 galaxies at 0.1 < z < 1.5 using archival ACS imaging. We find that the median size of galaxies in this mass range changes with redshift as r_eff = (10.4+/-0.4)(1 +z)^(0.65+/-0.05) kpc. Separating the galaxies into star forming and quiescent galaxies using their restframe U-V and V-J colors, we find no statistical difference between the median sizes of the most massive star-forming and quiescent galaxies at z = 2.5: they are 4.9+/-0.9 kpc and 4.3 +/-0.3 kpc respectively. However, we do find a significant difference in the S`ersic index between the two samples, such that massive quiescent galaxies have higher central densities than star forming galaxies. We extend the size-mass analysis to lower masses by combining it with the 3D-HST/CANDELS sample of van der Wel et al. (2014), and derive empirical relations between size, mass, and redshift. Fitting a relation of the form r_eff = A m_star^a, m_star = M_star/5x10^10 M_sun and r_eff in kpc, we find log A = -0.25 log (1 + z) + 0.79 and a = -0.13 log(1 + z) + 0.27. We also provide relations for the subsamples of star forming and quiescent galaxies. Our results confirm previous studies that were based on smaller samples or ground-based imaging.
High mass galaxies, with halo masses $M_{200} ge 10^{10} M_{odot}$, reveal a remarkable near-linear relation between their globular cluster (GC) system mass and their host galaxy halo mass. Extending this relation to the mass range of dwarf galaxies has been problematic due to the difficulty in measuring independent halo masses. Here we derive new halo masses based on stellar and HI gas kinematics for a sample of nearby dwarf galaxies with GC systems. We find that the GC system mass--halo mass relation for galaxies populated by GCs holds from halo masses of $M_{200} sim 10^{14} M_{odot}$ down to below $M_{200}$ $sim 10^9 M_{odot}$, although there is a substantial increase in scatter towards low masses. In particular, three well-studied ultra diffuse galaxies, with dwarf-like stellar masses, reveal a wide range in their GC-to-halo mass ratios. We compare our GC system--halo mass relation to the recent model of El Badry et al., finding that their fiducial model does not reproduce our data in the low mass regime. This may suggest that GC formation needs to be more efficient than assumed in their model, or it may be due to the onset of stochastic GC occupation in low mass halos. Finally, we briefly discuss the stellar mass-halo mass relation for our low mass galaxies with GCs, and we suggest some nearby dwarf galaxies for which searches for GCs may be fruitful.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا