ﻻ يوجد ملخص باللغة العربية
This paper elaborates control strategies to prevent clustering effects in opinion formation models. This is the exact opposite of numerous situations encountered in the literature where, on the contrary, one seeks controls promoting consensus. In order to promote declustering, instead of using the classical variance that does not capture well the phenomenon of dispersion, we introduce an entropy-type functional that is adapted to measuring pairwise distances between agents. We then focus on a Hegselmann-Krause-type system and design declustering sparse controls both in finite-dimensional and kinetic models. We provide general conditions characterizing whether clustering can be avoided as function of the initial data. Such results include the description of black holes (where complete collapse to consensus is not avoidable), safety zones (where the control can keep the system far from clustering), basins of attraction (attractive zones around the clustering set) and collapse prevention (when convergence to the clustering set can be avoided).
The original Hegselmann-Krause (HK) model is composed of a finite number of agents characterized by their opinion, a number in $[0,1]$. An agent updates its opinion via taking the average opinion of its neighbors whose opinion differs by at most $eps
The original Hegselmann-Krause (HK) model consists of a set of~$n$ agents that are characterized by their opinion, a number in~$[0, 1]$. Each agent, say agent~$i$, updates its opinion~$x_i$ by taking the average opinion of all its neighbors, the ag
A new class of cost functionals for optimal control of quantum systems which produces controls which are sparse in frequency and smooth in time is proposed. This is achieved by penalizing a suitable time-frequency representation of the control field,
In this paper, we investigate a sparse optimal control of continuous-time stochastic systems. We adopt the dynamic programming approach and analyze the optimal control via the value function. Due to the non-smoothness of the $L^0$ cost functional, in
We consider nonlinear transport equations with non-local velocity, describing the time-evolution of a measure, which in practice may represent the density of a crowd. Such equations often appear by taking the mean-field limit of finite-dimensional sy