ﻻ يوجد ملخص باللغة العربية
We consider nonlinear transport equations with non-local velocity, describing the time-evolution of a measure, which in practice may represent the density of a crowd. Such equations often appear by taking the mean-field limit of finite-dimensional systems modelling collective dynamics. We first give a sense to dissipativity of these mean-field equations in terms of Lie derivatives of a Lyapunov function depending on the measure. Then, we address the problem of controlling such equations by means of a time-varying bounded control action localized on a time-varying control subset with bounded Lebesgue measure (sparsity space constraint). Finite-dimension
We study the synthesis of optimal control policies for large-scale multi-agent systems. The optimal control design induces a parsimonious control intervention by means of l-1, sparsity-promoting control penalizations. We study instantaneous and infin
In this paper we model the role of a government of a large population as a mean field optimal control problem. Such control problems are constrainted by a PDE of continuity-type, governing the dynamics of the probability distribution of the agent pop
A mean-field selective optimal control problem of multipopulation dynamics via transient leadership is considered. The agents in the system are described by their spatial position and their probability of belonging to a certain population. The dynami
We propose a mean-field optimal control problem for the parameter identification of a given pattern. The cost functional is based on the Wasserstein distance between the probability measures of the modeled and the desired patterns. The first-order op
We study a family of optimal control problems in which one aims at minimizing a cost that mixes a quadratic control penalization and the variance of the system, both for finitely many agents and for the mean-field dynamics as their number goes to inf