ﻻ يوجد ملخص باللغة العربية
The rich dynamics and phase structure of driven systems includes the recently described phenomenon of the discrete time crystal (DTC), a robust phase which spontaneously breaks the discrete time translation symmetry of its driving Hamiltonian. Experiments in trapped ions and diamond nitrogen vacancy centers have recently shown evidence for this DTC order. Here, we show nuclear magnetic resonance (NMR) data of DTC behavior in a third, strikingly different system: a highly ordered spatial crystal in three dimensions. We devise a DTC echo experiment to probe the coherence of the driven system. We examine potential decay mechanisms for the DTC oscillations, and demonstrate the important effect of the internal Hamiltonian during nonzero duration pulses.
A discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic re
Chaotic dynamics in quantum many-body systems scrambles local information so that at late times it can no longer be accessed locally. This is reflected quantitatively in the out-of-time-ordered correlator of local operators, which is expected to deca
Spontaneous symmetry breaking is a fundamental concept in many areas of physics, ranging from cosmology and particle physics to condensed matter. A prime example is the breaking of spatial translation symmetry, which underlies the formation of crysta
The conventional framework for defining and understanding phases of matter requires thermodynamic equilibrium. Extensions to non-equilibrium systems have led to surprising insights into the nature of many-body thermalization and the discovery of nove
We present a detailed $^{31}$P nuclear magnetic resonance (NMR) study of the molecular rotation in the compound [Cu(pz)$_{2}$(2-HOpy)$_{2}$](PF$_{6}$)$_{2}$, where pz = C$_4$H$_4$N$_2$ and 2-HOpy = C$_5$H$_4$NHO. Here, a freezing of the PF$_6$ rotati