ﻻ يوجد ملخص باللغة العربية
We have obtained new observations of the partial Lyman limit absorber at zabs$=0.93$ towards quasar PG~1206+459, and revisit its chemical and physical conditions. The absorber, with $ N(HI) sim 10^{17.0}$ ~sqcm and absorption lines spread over $gtrsim$1000~kms in velocity, is one of the strongest known OVI absorbers at $log N(OVI)=$15.54$pm$0.17. Our analysis makes use of the previously known low-(e.g. MgII), intermediate-(e.g. SiIV), and high-ionization (e.g., CIV, NV, NeVIII) metal lines along with new $HST/$COS observations that cover OVI, and an $HST/$ACS image of the quasar field. Consistent with previous studies, we find that the absorber has a multiphase structure. The low-ionization phase arises from gas with a density of $log (n_{rm H}/rm cm^{-3})sim-2.5$ and a solar to super-solar metallicity. The high-ionization phase stems from gas with a significantly lower density, i.e. $log (n_{rm H}/rm cm^{-3}) sim-3.8$, and a near-solar to solar metallicity. The high-ionization phase accounts for all of the absorption seen in CIV, NV, and OVI. We find the the detected NeVIII, reported by cite{Tripp2011}, is best explained as originating in a stand-alone collisionally ionized phase at $Tsim10^{5.85}~rm K$, except in one component in which both OVI and NeVIII can be produced via photoionization. We demonstrate that such strong OVI absorption can easily arise from photoionization at $zgtrsim1$, but that, due to the decreasing extragalactic UV background radiation, only collisional ionization can produce large OVI features at $zsim0$. The azimuthal angle of $sim88$degree of the disk of the nearest ($rm 68~kpc$) luminous ($1.3L_*$) galaxy at $z_{rm gal}=0.9289$, which shows signatures of recent merger, suggests that the bulk of the absorption arises from metal enriched outflows.
Previous studies have shown that the incidence rate of intervening strong MgII absorbers towards GRBs were a factor of 2 - 4 higher than towards quasars. Exploring the similar sized and uniformly selected legacy data sets XQ-100 and XSGRB, each consi
We present the results from VLT/X-shooter spectroscopic observations of 11 extremely strong intervening damped Lyman-alpha absorbers (ESDLAs) initially selected as high N(Hi) (i.e.>=5x10^21 cm-2) candidates from the Sloan Digital Sky Survey (SDSS). W
We report the detection of HI 21 cm absorption from the $z=2.289$ damped Lyman-$alpha$ system (DLA) towards TXS 0311+430, with the Green Bank Telescope. The 21 cm absorption has a velocity spread (between nulls) of $sim 110$ km s$^{-1}$ and an integr
The metallicity in portions of high-redshift galaxies has been successfully measured thanks to the gas observed in absorption in the spectra of quasars, in the Damped Lyman-alpha systems (DLAs). Surprisingly, the global mean metallicity derived from
We present K-band imaging of fields around 30 strong CaII absorption line systems, at 0.7<z<1.1, three of which are confirmed Damped Lyman-alpha systems. A significant excess of galaxies is found within 60 (~50kpc) from the absorber line-of-sight. Th