ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving the conundrum of intervening strong MgII absorbers towards GRBs and quasars

137   0   0.0 ( 0 )
 نشر من قبل Lise Christensen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous studies have shown that the incidence rate of intervening strong MgII absorbers towards GRBs were a factor of 2 - 4 higher than towards quasars. Exploring the similar sized and uniformly selected legacy data sets XQ-100 and XSGRB, each consisting of 100 quasar and 81 GRB afterglow spectra obtained with a single instrument (VLT/X-shooter), we demonstrate that there is no disagreement in the number density of strong MgII absorbers with rest-frame equivalent widths $W_r^{2796} >$ 1 {AA} towards GRBs and quasars in the redshift range 0.1 < z < 5. With large and similar sample sizes, and path length coverages of $Delta$z = 57.8 and 254.4 for GRBs and quasars, respectively, the incidences of intervening absorbers are consistent within 1 sigma uncertainty levels at all redshifts. For absorbers at z < 2.3 the incidence towards GRBs is a factor of 1.5$pm$0.4 higher than the expected number of strong MgII absorbers in SDSS quasar spectra, while for quasar absorbers observed with X-shooter we find an excess factor of 1.4$pm$0.2 relative to SDSS quasars. Conversely, the incidence rates agree at all redshifts with reported high spectral resolution quasar data, and no excess is found. The only remaining discrepancy in incidences is between SDSS MgII catalogues and high spectral resolution studies. The rest-frame equivalent width distribution also agrees to within 1 sigma uncertainty levels between the GRB and quasar samples. Intervening strong MgII absorbers towards GRBs are therefore neither unusually frequent, nor unusually strong.



قيم البحث

اقرأ أيضاً

120 - Ravi Joshi 2013
We report the first comparative study of strong MgII absorbers seen towards radio-loud quasars of core-dominated (CDQs) and lobe-dominated (LDQs) types and normal QSOs. The MgII associated absorption systems having a velocity offset v < 5000km/s from the systemic velocity of the background quasar were also excluded. Existing spectroscopic data for redshift-matched sightlines of 3975 CDQs and 1583 LDQs, covering a emission redshift range 0.39-4.87, were analysed and 864 strong MgII absorbers were found, covering the redshift range 0.45-2.17. The conclusions reached using this well-defined large dataset of strong MgII absorbers are: (i) The number density, dN/dz, towards CDQs shows a small, marginally significant excess over the estimate available for QSOs; (ii) In the redshift space, this difference is reflected in terms of a 1.6sigma excess of dN/dz over the QSOs, within the narrow redshift interval 1.2-1.8; (iii) The dN/dbeta distribution (with beta=v/c) for CDQs shows a significant excess over the distribution found for a redshift and luminosity matched sample of QSOs, at beta in the range 0.05-0.1. This leads us to infer that a significant fraction of strong MgII absorption systems seen in this offset velocity range are probably associated with the CDQs and might be accelerated into the line of sight by their powerful jets and/or due to the accretion-disk outflows close to our direction. Support to this scenario comes from a consistency check in which we only consider the spectral range corresponding to beta > 0.2. The computed redshift distribution for strong MgII absorbers towards CDQs now shows excellent agreement with that known for QSOs, as indeed is expected for purely intervening absorption systems. Thus, it appears that for CDQs the associated strong MgII absorbers can be seen at much larger velocities relative to the nucleus than the commonly adopted upper limit of 5000km/s.
We present the results from VLT/X-shooter spectroscopic observations of 11 extremely strong intervening damped Lyman-alpha absorbers (ESDLAs) initially selected as high N(Hi) (i.e.>=5x10^21 cm-2) candidates from the Sloan Digital Sky Survey (SDSS). W e confirm the high Hi column densities which we measure to be in the range log N(Hi) = 21.6-22.4. Molecular hydrogen is detected with high column densities (N(H_2)>=10^18 cm-2) in five out of eleven systems, three of which are reported here for the first time. We compare the chemical properties of this sample of ESDLAs, supplemented with literature measurements, to that of DLAs located at the redshift of long-duration gamma-ray bursts (GRB-DLAs). We confirm that the two populations are almost indistinguishable in terms of chemical enrichment, H_2 column density and gas kinematics. All this suggests that ESDLAs and GRB-DLAs probe similar galactic environments. We search for the galaxy counterparts of ESDLAs and find associated emission lines in three out of eleven systems, two of which are reported here for the first time (towards the quasars SDSS J002503.03+114547.80 and SDSS J114347.21+142021.60, respectively). The measured separations between the quasar sightlines and the emission associated with the ESDLA galaxy are all very small (rho < 3 kpc). While the small impact parameters are similar to what is observed for GRB-DLAs, the associated star-formation rates are on average lower than seen for GRB host galaxies. This is explained by long-duration GRBs being associated with the death of massive stars, hence pinpointing regions of active star formation in the GRB host galaxies. Our observations support the suggestion from the literature that ESDLAs could act as blind analogues of GRB-DLAs, probing high column density neutral gas in the heart of high-redshift galaxies, without any prior on the instantaneous star-formation rate.
We present the first search for galaxy counterparts of intervening high-z (2<z< 3.6) sub-DLAs and DLAs towards GRBs. Our final sample comprises of five intervening sub-DLAs and DLAs in four GRB fields. To identify candidate galaxy counterparts of the absorbers we use deep optical and near-infrared imaging, and low-, mid- and high-resolution spectroscopy acquired with 6 to 10-m class telescopes, the Hubble and the Spitzer space telescopes. Furthermore, we use the spectroscopic information and spectral-energy-distribution fitting techniques to study them in detail. Our main result is the detection and spectroscopic confirmation of the galaxy counterpart of the intervening DLA at z=3.096 in the field of GRB 070721B (z_GRB=3.6298) as proposed by other authors. We also identify good candidates for the galaxy counterparts of the two strong MgII absorbers at z=0.6915 and 1.4288 towards GRB 050820A (z_GRB=2.615). The properties of the detected DLA galaxy are typical for Lyman-break galaxies (LBGs) at similar redshifts; a young, highly starforming galaxy that shows evidence for a galactic outflow. This supports the hypothesis that a DLA can be the gaseous halo of an LBG. In addition, we report a redshift coincidence of different objects associated with metal lines in the same field, separated by 130-161 kpc. The high detection rate of three correlated structures on a length scale as small as ~150 kpc in two pairs of lines of sight is intriguing. The absorbers in each of these are most likely not part of the same gravitationally bound structure. They more likely represent groups of galaxies.
130 - Ravi Joshi 2013
We investigate the dependence of residual rotation measure (RRM) on intervening absorption systems at cosmic distances by using a large sample of 539 SDSS quasars in conjunction with the available rotation measure catalog at around 21cm wavelength. W e found an excess extragalactic contribution in standard deviation of observed RRM of about 8.11+/-4.83 Rad/m^2 in our sample with intervening MgII absorber as compare to the sample without MgII absorber. Our results suggest that intervening absorbers could contribute to the enhancement of RRM at around 21cm wavelength, as was found earlier for RM measurements at around 6cm wavelength.
In order to investigate the origin of the excess of strong MgII systems towards GRB afterglows as compared to QSO sightlines, we have measured the incidence of MgII absorbers towards a third class of objects: the Blazars. This class includes the BL L ac object population for which a tentative excess of MgII systems had already been reported. We observed with FORS1 at the ESO-VLT 42 Blazars with an emission redshift 0.8<z_em<1.9, to which we added the three high z northern objects belonging to the 1Jy BL Lac sample. We detect 32 MgII absorbers in the redshift range 0.35-1.45, leading to an excess in the incidence of MgII absorbers compared to that measured towards QSOs by a factor ~2, detected at 3 sigma. The amplitude of the effect is similar to that found along GRB sightlines. Our analysis provides a new piece of evidence that the observed incidence of MgII absorbers might depend on the type of background source. In front of Blazars, the excess is apparent for both strong (w_ r(2796) > 1.0 A) and weaker (0.3 < w_r(2796) < 1.0 A) MgII systems. The dependence on velocity separation with respect to the background Blazars indicates, at the ~1.5 sigma level, a potential excess for beta = v/c ~0.1. We show that biases involving dust extinction or gravitational amplification are not likely to notably affect the incidence of MgII systems towards Blazars. Finally we discuss the physical conditions required for these absorbers to be gas entrained by the powerful Blazar jets. More realistic numerical modelling of jet-ambient gas interaction is required to reach any firm conclusions as well as repeat observations at high spectral resolution of strong MgII absorbers towards Blazars in both high and low states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا