ﻻ يوجد ملخص باللغة العربية
A gapped many-body system is described by path integral on a space-time lattice $C^{d+1}$, which gives rise to a partition function $Z(C^{d+1})$ if $partial C^{d+1} =emptyset$, and gives rise to a vector $|Psirangle$ on the boundary of space-time if $partial C^{d+1} eqemptyset$. We show that $V = text{log} sqrt{langlePsi|Psirangle}$ satisfies the inclusion-exclusion property $frac{V(Acup B)+V(Acap B)}{V(A)+V(B)}=1$ and behaves like a volume of the space-time lattice $C^{d+1}$ in large lattice limit (i.e. thermodynamics limit). This leads to a proposal that the vector $|Psirangle$ is the quantum-volume of the space-time lattice $C^{d+1}$. The inclusion-exclusion property does not apply to quantum-volume since it is a vector. But quantum-volume satisfies a quantum additive property. The violation of the inclusion-exclusion property by $V = text{log} sqrt{langlePsi|Psirangle}$ in the subleading term of thermodynamics limit gives rise to topological invariants that characterize the topological order in the system. This is a systematic way to construct and compute topological invariants from a generic path integral. For example, we show how to use non-universal partition functions $Z(C^{2+1})$ on several related space-time lattices $C^{2+1}$ to extract $(M_f)_{11}$ and $text{Tr}(M_f)$, where $M_f$ is a representation of the modular group $SL(2,mathbb{Z})$ -- a topological invariant that almost fully characterizes the 2+1D topological orders.
We propose the definitions of many-body topological invariants to detect symmetry-protected topological phases protected by point group symmetry, using partial point group transformations on a given short-range entangled quantum ground state. Partial
We present a fully many-body formulation of topological invariants for various topological phases of fermions protected by antiunitary symmetry, which does not refer to single particle wave functions. For example, we construct the many-body $mathbb{Z
We discuss how strongly interacting higher-order symmetry protected topological (HOSPT) phases can be characterized from the entanglement perspective: First, we introduce a topological many-body invariant which reveals the non-commutative algebra bet
We present a software package DiracQ, for use in quantum many-body Physics. It is designed for helping with typical algebraic manipulations that arise in quantum Condensed Matter Physics and Nuclear Physics problems, and also in some subareas of Chem
Inspired by a recently constructed commuting-projector Hamiltonian for a two-dimensional (2D) time-reversal-invariant topological superconductor [Wang et al., Phys. Rev. B 98, 094502 (2018)], we introduce a commuting-projector model that describes an