ترغب بنشر مسار تعليمي؟ اضغط هنا

DiracQ: A Quantum Many-Body Physics Package

165   0   0.0 ( 0 )
 نشر من قبل Sriram Shastry
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a software package DiracQ, for use in quantum many-body Physics. It is designed for helping with typical algebraic manipulations that arise in quantum Condensed Matter Physics and Nuclear Physics problems, and also in some subareas of Chemistry. DiracQ is invoked within a Mathematica session, and extends the symbolic capabilities of Mathematica by building in standard commutation and anticommutation rules for several objects relevant in many-body Physics. It enables the user to carry out computations such as evaluating the commutators of arbitrary combinations of spin, Bose and Fermi operators defined on a discrete lattice, or the position and momentum operators in the continuum. Some examples from popular systems, such as the Hubbard model, are provided to illustrate the capabilities of the package.



قيم البحث

اقرأ أيضاً

A gapped many-body system is described by path integral on a space-time lattice $C^{d+1}$, which gives rise to a partition function $Z(C^{d+1})$ if $partial C^{d+1} =emptyset$, and gives rise to a vector $|Psirangle$ on the boundary of space-time if $partial C^{d+1} eqemptyset$. We show that $V = text{log} sqrt{langlePsi|Psirangle}$ satisfies the inclusion-exclusion property $frac{V(Acup B)+V(Acap B)}{V(A)+V(B)}=1$ and behaves like a volume of the space-time lattice $C^{d+1}$ in large lattice limit (i.e. thermodynamics limit). This leads to a proposal that the vector $|Psirangle$ is the quantum-volume of the space-time lattice $C^{d+1}$. The inclusion-exclusion property does not apply to quantum-volume since it is a vector. But quantum-volume satisfies a quantum additive property. The violation of the inclusion-exclusion property by $V = text{log} sqrt{langlePsi|Psirangle}$ in the subleading term of thermodynamics limit gives rise to topological invariants that characterize the topological order in the system. This is a systematic way to construct and compute topological invariants from a generic path integral. For example, we show how to use non-universal partition functions $Z(C^{2+1})$ on several related space-time lattices $C^{2+1}$ to extract $(M_f)_{11}$ and $text{Tr}(M_f)$, where $M_f$ is a representation of the modular group $SL(2,mathbb{Z})$ -- a topological invariant that almost fully characterizes the 2+1D topological orders.
321 - Xizhi Han 2020
A numerical bootstrap method is proposed to provide rigorous and nontrivial bounds in general quantum many-body systems with locality. In particular, lower bounds on ground state energies of local lattice systems are obtained by imposing positivity c onstraints on certain operator expectation values. Complemented with variational upper bounds, ground state observables are constrained to be within a narrow range. The method is demonstrated with the Hubbard model in one and two dimensions, and bounds on ground state double occupancy and magnetization are discussed.
We study a kinetically constrained pair hopping model that arises within a Landau level in the quantum Hall effect. At filling $ u = 1/3$, the model exactly maps onto the so-called PXP model, a constrained model for the Rydberg atom chain that is num erically known to exhibit ETH-violating states in the middle of the spectrum or quantum many-body scars. Indeed, particular charge density wave configurations exhibit the same revivals seen in the PXP model. We generalize the mapping to fillings factors $ u = p/(2p+1)$, and show that the model is equivalent to non-integrable spin-chains within particular constrained Krylov Hilbert spaces. These lead to new examples of quantum many-body scars which manifest as revivals and slow thermalization of particular charge density wave states. Finally, we investigate the stability of the quantum scars under certain Hamiltonian perturbations motivated by the fractional quantum Hall physics.
Characterizing states of matter through the lens of their ergodic properties is a fascinating new direction of research. In the quantum realm, the many-body localization (MBL) was proposed to be the paradigmatic ergodicity breaking phenomenon, which extends the concept of Anderson localization to interacting systems. At the same time, random matrix theory has established a powerful framework for characterizing the onset of quantum chaos and ergodicity (or the absence thereof) in quantum many-body systems. Here we numerically study the spectral statistics of disordered interacting spin chains, which represent prototype models expected to exhibit MBL. We study the ergodicity indicator $g=log_{10}(t_{rm H}/t_{rm Th})$, which is defined through the ratio of two characteristic many-body time scales, the Thouless time $t_{rm Th}$ and the Heisenberg time $t_{rm H}$, and hence resembles the logarithm of the dimensionless conductance introduced in the context of Anderson localization. We argue that the ergodicity breaking transition in interacting spin chains occurs when both time scales are of the same order, $t_{rm Th} approx t_{rm H}$, and $g$ becomes a system-size independent constant. Hence, the ergodicity breaking transition in many-body systems carries certain analogies with the Anderson localization transition. Intriguingly, using a Berezinskii-Kosterlitz-Thouless correlation length we observe a scaling solution of $g$ across the transition, which allows for detection of the crossing point in finite systems. We discuss the observation that scaled results in finite systems by increasing the system size exhibit a flow towards the quantum chaotic regime.
We show that the magnetization of a single `qubit spin weakly coupled to an otherwise isolated disordered spin chain exhibits periodic revivals in the localized regime, and retains an imprint of its initial magnetization at infinite time. We demonstr ate that the revival rate is strongly suppressed upon adding interactions after a time scale corresponding to the onset of the dephasing that distinguishes many-body localized phases from Anderson insulators. In contrast, the ergodic phase acts as a bath for the qubit, with no revivals visible on the time scales studied. The suppression of quantum revivals of local observables provides a quantitative, experimentally observable alternative to entanglement growth as a measure of the `non-ergodic but dephasing nature of many-body localized systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا