ترغب بنشر مسار تعليمي؟ اضغط هنا

Stoichiometric and off-stoichiometric full Heusler $mathbf {Fe_2V_{1-x}W_xAl} $ thermoelectric systems

73   0   0.0 ( 0 )
 نشر من قبل Ernst Bauer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A series of full-Heusler alloys, $rm Fe_2V_{1-x}W_xAl$, $0 leq x leq 0.2$, was prepared, characterized and relevant physical properties to account for the thermoelectric performance were studied in a wide temperature range. Additionally, off-stoichiometric samples with similar compositions have been included, and a 10~% improvement of the thermoelectric figure of merit was obtained. The V/W substitution causes i) a change of the main carrier type, from holes to electrons as evidenced from Seebeck and Hall measurements and ii) a substantial reduction of the lattice thermal conductivity due to a creation of lattice disorder by means of a distinct different mass and metallic radius upon the V/W substitution. Moreover $ZT$ values above 0.2 have been obtained. A microscopic understanding of the experimental data observed is revealed from ab-initio calculations of the electronic and phononic structure.



قيم البحث

اقرأ أيضاً

LaVO$_3$ (LVO) has been proposed as a promising material for photovoltaics because its strongly correlated textit{d} electrons can facilitate the creation of multiple electron-hole pairs per incoming photon, which would lead to increased device effic iency. In this study, we intentionally grow off-stoichiometric LVO films by changing the growth conditions such as laser fluence. Our aim is to study how deviating La:V stoichiometries affect the electronic properties of LVO thin films. We find that the off-stoichiometry clearly alters the physical properties of the films. Structural characterization shows that both La-rich and V-rich films have different levels of structural distortion, with La-rich (V-rich) films showing a larger (smaller) out-of-plane lattice parameter compared to what one would expect from epitaxial strain effects alone. Both types of films show deviation from the behavior of bulk LVO in optical measurement, i.e., they do not show signatures of the expected long range orbital order, which can be a result of the structural distortions or the presence of structural domains. In transport measurements, La-rich films display clear signatures of electronic phase separation accompanying a temperature induced metal-insulator transition, while V-rich films behave as Mott insulators. The out-of-plane lattice parameter plays a crucial role in determining the transport properties, as the crossover from Mott-insulating to disorder-induced phase-separated behavior occurs around a lattice parameter value of 3.96 $overset{circ}{mathrm{A}}$, quite different from what has been previously reported.
107 - Junsoo Park , Yi Xia , Alex Ganose 2020
We report first-principles density-functional study of electron-phonon interactions and thermoelectric transport properties of full-Heusler compounds Sr$_{2}$BiAu and Sr$_{2}$SbAu. Our results show that ultrahigh intrinsic bulk thermoelectric perform ance across a wide range of temperatures is physically possible and point to the presence of multiply degenerate and highly dispersive carrier pockets as the key factor for achieving it. Sr$_{2}$BiAu, which features ten energy-aligned low effective mass pockets (six along $Gamma-X$ and four at $L$), is predicted to deliver $n$-type $zT=0.4-4.9$ at $T=100-700$~K. Comparison with the previously investigated Ba$_{2}$BiAu compound shows that the additional $L$-pockets in Sr$_{2}$BiAu significantly increase its low-temperature power factor to a maximum value of $12$~mW~m$^{-1}$~K$^{-2}$ near $T=300$~K. However, at high temperatures the power factor of Sr$_{2}$BiAu drops below that of Ba$_{2}$BiAu because the $L$ states are heavier and subject to strong scattering by phonon deformation as opposed to the lighter $Gamma-X$ states that are limited by polar-optical scattering. Sr$_{2}$SbAu is predicted to deliver lower $n$-type of $zT=3.4$ at $T=750$~K due to appreciable misalignment between the $L$ and $Gamma-X$ carrier pockets, generally heavier scattering, and slightly higher lattice thermal conductivity. Soft acoustic modes, responsible for low lattice thermal conductivity, also increase vibrational entropies and high-temperature stability of the Heusler compounds, suggesting that their experimental synthesis may be feasible. The dominant intrinsic defects are found to be Au vacancies, which drive the Fermi level towards the conduction band and work in favor of $n$-doping.
In this work, we studied the pathways for formation of stoichiometric tcn~thin films. Polycrystalline and epitaxial tcn~films were prepared using reactive direct current magnetron (dcMS) sputtering technique. A systematic variation in the substrate t emperature (Ts) during the dcMS process reveals that the lattice parameter (LP) decreases as Ts~increases. We found that nearly stoichiometric tcn~films can be obtained when Ts~= 300,K. However, they emerge from the transient state of Co target ($phi$3,inch). By reducing the target size to $phi$1,inch, now the tcn~phase formation takes place from the metallic state of Co target. In this case, LP of tcn~film comes out to be $sim$99p~of the value expected for tcn. This is the largest value of LP found so far for tcn. The pathways achieved for formation of polycrystalline tcn~were adopted to grow an epitaxial tcn~film, which shows four fold magnetic anisotropy in magneto-optic Kerr effect measurements. Detailed characterization using secondary ion mass spectroscopy indicates that N diffuses out when Ts~is raised even to 400,K. Measurement of electronic structure using x-ray photoelectron spectroscopy and x-ray absorption spectroscopy further confirms it. Magnetization measurements using bulk magnetization and polarized neutron reflectivity show that the saturation magnetization of stoichiometric tcn~film is even larger than pure Co. Since all our measurements indicated that N could be diffusing out, when tcn~films are grown at high Ts, we did actual N self-diffusion measurements in a CoN sample and found that N self-diffusion was indeed substantially higher. The outcome of this work clearly shows that the tcn~films grown prior to this work were always N deficient and the pathways for formation of a stoichiometric tcn~have been achieved.
246 - Yuefeng Nie , Ye Zhu , Che-hui Lee 2014
Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assum e that atomically precise interfaces result from stoichiometric growth, but here we show that the most precise control is obtained for non-stoichiometric growth where differing surface energies can be compensated by surfactant-like effects. For the precise growth of Sr$_{n+1}$Ti$_n$O$_{3n+1}$ Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control---from just the $n=infty$ end members (perovskites) to the entire RP family---enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.
The recently introduced theories of Topological Quantum Chemistry and Symmetry-Based Indicators (SIs) have facilitated the discovery of novel topological phases of matter and large-scale searches for materials with experimentally accessible topologic al properties at the Fermi energy ($E_F$). In this work, we have completed the first catalog of stable and fragile topology in all of the bands both at and away from $E_F$ in the Inorganic Crystal Structure Database (ICSD), which we have made accessible through a substantial upgrade of the Topological Materials Database. We have computed the electronic structure, topological class, and stable and fragile SIs of all bands in the 96,196 processable ICSD entries with stoichiometric chemical formulas in the presence and absence of SOC. Our calculations represent the completion of the symmetry-indicated band topology of known nonmagnetic materials, and a doubling of the number of materials accessible in previous topological material catalogs. Through our calculations, we discover the existence of repeat-topological (RTopo) materials with stable topological insulating (TI) gaps at and just below $E_F$, and supertopological (STopo) materials in which every isolated set of bands above the core shell is stable topological. Our findings recontextualize several previous experimental investigations of topological materials. We find that Ta$_2$NiSe$_5$ and Ta$_2$NiSe$_7$, respectively previously highlighted for hosting exciton-insulator and CDW phases, are 3D TIs in their normal states, and that rhombohedral bismuth and Bi$_2$Mg$_3$ are both RTopo and STopo materials. We present detailed statistics for our computations revealing that 52.65% of all materials are topological at $E_F$, roughly 2/3 of bands across all materials exhibit symmetry-indicated stable topology, and that shockingly, 87.99% of all materials contain at least one topological band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا