ﻻ يوجد ملخص باللغة العربية
It was recently observed that Kerr-AdS metrics with negative mass describe smooth spacetimes that have a region with naked closed time-like curves, bounded by a velocity of light surface. Such spacetimes are sometimes known as time machines. In this paper we study the BPS limit of these metrics, and find that the mass and angular momenta become discretised. The completeness of the spacetime also requires that the time coordinate be periodic, with precisely the same period as that which arises for the global AdS in which the time machine spacetime is immersed. For the case of equal angular momenta in odd dimensions, we construct the Killing spinors explicitly, and show they are consistent with the global structure. Thus in examples where the solution can be embedded in a gauged supergravity theory, they will be supersymmetric. We also compare the global structure of the BPS AdS$_3$ time machine with the BTZ black hole, and show that the global structure allows to have two different supersymmetric limits.
I generalize the Dray-t Hooft gravitational shockwave to the Kerr-AdS background.
We show that the Kerr-(Newman)-AdS$_4$ black hole will be shadowless if its rotation parameter is larger than a critical value $a_c$ which is not necessarily equal to the AdS radius. This is because the null hypersurface caustics (NHC) appears both i
By treating the black hole event horizon as a stochastic thermal fluctuating variable for small-large black hole phase transition, we investigate the dynamical process of phase transition for the Kerr AdS black holes on free energy landscape. We find
We investigate exact non-stationary quantum states of vacuum toroidal black holes with a negative cosmological constant in arbitrary dimensions using the framework of throat quantization pioneered by Louko and Makela for Schwarzschild black holes. Th
Different forms of the metric for the Kerr-NUT-(anti-)de Sitter space-time are being widely used in its extension to higher dimensions. The purpose of this note is to relate the parameters that are being used to the physical parameters (mass, rotatio