ﻻ يوجد ملخص باللغة العربية
Due to the angular condition in the light-front dynamics (LFD), the extraction of the electromagnetic form factors for spin-1 particles can be uniquely determined taking into account implicitly non-valence and/or the zero-mode contributions to the matrix elements of the electromagnetic current. No matter which matrix elements of the electromagnetic current is used to extract the electromagnetic form factors, the same unique result is obtained. As physical observables, the electromagnetic form factors obtained from matrix elements of the current in LFD must be equal to those obtained in the instant form calculations. Recently, the Babar collaboration cite{Aubert2008} has analyzed the reaction $e^+ e^-rightarrow rho^+ + rho^-$ at $sqrt{s}=10.58 GeV$ to measure the cross section as well as the ratios of the helicity amplitudes $F_{lambdalambda}$. We present our recent analysis of the Babar data for the rho meson considering the angular condition in LFD to put a stringent test on the onset of asymptotic perturbative QCD and predict the energy regime where the subleading contributions are still considerable.
In this review article, we discuss the current status and future prospects of perturbation theory as a means of studying the equilibrium thermodynamic and near-equilibrium transport properties of deconfined QCD matter. We begin with a brief introduct
Using an effective field theory approach for higher-spin fields, we derive the interactions of colour singlet and electrically neutral particles with a spin higher than unity, concentrating on the spin-3/2, spin-2, spin-5/2 and spin-3 cases. We compu
We compute perturbative QCD corrections to $B to D$ form factors at leading power in $Lambda/m_b$, at large hadronic recoil, from the light-cone sum rules (LCSR) with $B$-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to-$B$-
Collider experiments often exploit information about the quantum numbers of final state hadrons to maximize their sensitivity, with applications ranging from the use of tracking information (electric charge) for precision jet substructure measurement
We develop the first systematic theoretical approach to dijet asymmetries in hadron-hadron collisions based on the perturbative QCD (pQCD) expansion and the Sudakov resummation formalism. We find that the pQCD calculation at next-to-leading order is