ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-Distance Spin Transport Through a Graphene Quantum Hall Antiferromagnet

115   0   0.0 ( 0 )
 نشر من قبل Chun Ning (Jeanie) Lau
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Antiferromagnetic insulators (AFMI) are robust against stray fields, and their intrinsic dynamics could enable ultrafast magneto-optics and ultrascaled magnetic information processing. Low dissipation, long distance spin transport and electrical manipulation of antiferromagnetic order are much sought-after goals of spintronics research. Here, we report the first experimental evidence of robust long-distance spin transport through an AFMI, in our case the gate-controlled, canted antiferromagnetic (CAF) state that appears at the charge neutrality point of graphene in the presence of an external magnetic field. Utilizing gate-controlled quantum Hall (QH) edge states as spin-dependent injectors and detectors, we observe large, non-local electrical signals across a 5 micron-long, insulating channel only when it is biased into the nu=0 CAF state. Among possible transport mechanisms, spin superfluidity in an antiferromagnetic state gives the most consistent interpretation of the non-local signals dependence on magnetic field, temperature and filling factors. This work also demonstrates that graphene in the QH regime is a powerful model system for fundamental studies of antiferromagnetic, and in the case of a large in-plane field, ferromagnetic spintronics.



قيم البحث

اقرأ أيضاً

Graphene is the first model system of two-dimensional topological insulator (TI), also known as quantum spin Hall (QSH) insulator. The QSH effect in graphene, however, has eluded direct experimental detection because of its extremely small energy gap due to the weak spin-orbit coupling. Here we predict by ab initio calculations a giant (three orders of magnitude) proximity induced enhancement of the TI energy gap in the graphene layer that is sandwiched between thin slabs of Sb2Te3 (or MoTe2). This gap (1.5 meV) is accessible by existing experimental techniques, and it can be further enhanced by tuning the interlayer distance via compression. We reveal by a tight-binding study that the QSH state in graphene is driven by the Kane-Mele interaction in competition with Kekule deformation and symmetry breaking. The present work identifies a new family of graphene-based TIs with an observable and controllable bulk energy gap in the graphene layer, thus opening a new avenue for direct verification and exploration of the long-sought QSH effect in graphene.
We have fabricated a lateral double barrier magnetic tunnel junction (MTJ) which consists of a single self-assembled InAs quantum dot (QD) with ferromagnetic Co leads. The MTJ shows clear hysteretic tunnel magnetoresistance (TMR) effect, which is evi dence for spin transport through a single semiconductor QD. The TMR ratio and the curve shapes are varied by changing the gate voltage.
Quantum spin Hall (QSH) system can exhibit exotic spin transport phenomena, mediated by its topological edge states. Here a novel concept of bending strain engineering to tune the spin transport properties of a QSH system is demonstrated by both mode l and first-principles calculations. Interestingly, we discover that bending strain can be used to mitigate the spin conservation of a QSH system to generate a non-zero spin current (SC), meanwhile the preservation of time reversal symmetry renders its edge states topologically protected to transport robust SC without back scattering. This novel physics mechanism can be applied to effectively tune the SC and spin Hall current in a QSH system by control of its bending curvature. Furthermore, the realization of QSH systems with controllable curvature can be achieved by the concept of topological nanomechnical architecture. Taking Bi/Cl/Si(111) as a material example, we demonstrate that the relative spin orientations between two edge states of a Bi/Cl/Si(111) film can indeed be tuned dramatically by its self-bending behaviors induced by the pre-designed inherent strain. Therefore, this concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.
76 - S. Krompiewski 2004
Carbon nanotubes (CNT) belong to the most promising new materials which can in the near future revolutionize the conventional electronics. When sandwiched between ferromagnetic electrodes, the CNT behaves like a spacer in conventional spin-valves, le ading quite often to a considerable giant magneto-resistance effect (GMR). This paper is devoted to reviewing some topics related to electron correlations in CNT. The main attention however is directed to the following effects essential for electron transport through nanotubes: (i) nanotube/electrode coupling and (ii) inter-tube interactions.It is shown that these effects may account for some recent experimental reports on GMR, including those on negative (inverse) GMR.
We study RKKY interactions between local magnetic moments for both doped and undoped graphene. We find in both cases that the interactions are primarily ferromagnetic for moments on the same sublattice, and antiferromagnetic for moments on opposite s ublattices. This suggests that at sufficiently low temperatures dilute magnetic moments embedded in graphene can order into a state analogous to that of a dilute antiferromagnet. We find that in the undoped case one expects no net magnetic moment, and demonstrate numerically that this effect generalizes to ribbons where the magnetic response is strongest at the edge, suggesting the possibility of an unusual spin-transfer device. For doped graphene we find that moments at definite lattice sites interact over longer distances than those placed in interstitial sites of the lattice ($1/R^2$ vs. $1/R^3$) because the former support a Kohn anomaly that is suppressed in the latter due to the absence of backscattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا