ﻻ يوجد ملخص باللغة العربية
We revisit the results of Zamolodchikov and others on the deformation of two-dimensional quantum field theory by the determinant $det T$ of the stress tensor, commonly referred to as $Toverline T$. Infinitesimally this is equivalent to a random coordinate transformation, with a local action which is, however, a total derivative and therefore gives a contribution only from boundaries or nontrivial topology. We discuss in detail the examples of a torus, a finite cylinder, a disk and a more general simply connected domain. In all cases the partition function evolves according to a linear diffusion-type equation, and the deformation may be viewed as a kind of random walk in moduli space. We also discuss possible generalizations to higher dimensions.
We point out that the arguments of Zamolodchikov and others on the $Toverline T$ and similar deformations of two-dimensional field theories may be extended to the more general non-Lorentz invariant case, for example non-relativistic and Lifshitz-type
We show that the two-dimensional $N=(2,2)$ Volkov-Akulov action that describes the spontaneous breaking of supersymmetry is a $Tbar{T}$ deformation of a free fermionic theory. Our findings point toward a possible relation between nonlinear supersymmetry and $T bar T$ flows.
These are lecture notes for the course Poisson geometry and deformation quantization given by the author during the fall semester 2020 at the University of Zurich. The first chapter is an introduction to differential geometry, where we cover manifold
We develop a reformulation of the functional integral for bosons in terms of bilocal fields. Correlation functions correspond to quantum probabilities instead of probability amplitudes. Discrete and continuous global symmetries can be treated similar
Motivated by the increasing connections between information theory and high-energy physics, particularly in the context of the AdS/CFT correspondence, we explore the information geometry associated to a variety of simple systems. By studying their Fi