ﻻ يوجد ملخص باللغة العربية
In Ultrasound (US) imaging, Delay and Sum (DAS) is the most common beamformer, but it leads to low quality images. Delay Multiply and Sum (DMAS) was introduced to address this problem. However, the reconstructed images using DMAS still suffer from level of sidelobes and low noise suppression. In this paper, a novel beamforming algorithm is introduced based on the expansion of DMAS formula. It is shown that there is a DAS algebra inside the expansion, and it is proposed to use DMAS instead of the DAS algebra. The introduced method, namely Double Stage DMAS (DS-DMAS), is evaluated numerically and experimentally. The quantitative results indicate that DS-DMAS results in about 25% lower level of sidelobes compared to DMAS. Moreover, the introduced method leads to 23%, 22% and 43% improvement in Signal-to-Noise Ratio, Full-Width-Half-Maximum and Contrast Ratio, respectively, in comparison with DMAS beamformer.
Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. How
Photoacoustic imaging (PAI), is a promising medical imaging technique that provides the high contrast of the optical imaging and the resolution of ultrasound (US) imaging. Among all the methods, Three-dimensional (3D) PAI provides a high resolution a
Photoacoustic imaging (PAI) is an emerging biomedical imaging modality capable of providing both high contrast and high resolution of optical and UltraSound (US) imaging. When a short duration laser pulse illuminates the tissue as a target of imaging
In Photoacoustic imaging, Delay-and-Sum (DAS) algorithm is the most commonly used beamformer. However, it leads to a low resolution and high level of sidelobes. Delay-Multiply-and-Sum (DMAS) was introduced to provide lower sidelobes compared to DAS.
Increasing the number of transmit and receive elements in multiple-input-multiple-output (MIMO) antenna arrays imposes a substantial increase in hardware and computational costs. We mitigate this problem by employing a reconfigurable MIMO array where