ﻻ يوجد ملخص باللغة العربية
Photoacoustic imaging (PAI) is an emerging biomedical imaging modality capable of providing both high contrast and high resolution of optical and UltraSound (US) imaging. When a short duration laser pulse illuminates the tissue as a target of imaging, tissue induces US waves and detected waves can be used to reconstruct optical absorption distribution. Since receiving part of PA consists of US waves, a large number of beamforming algorithms in US imaging can be applied on PA imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in US imaging. However, make use of DAS beamformer leads to low resolution images and large scale of off-axis signals contribution. To address these problems a new paradigm namely Delay-Multiply-and-Sum (DMAS), which was used as a reconstruction algorithm in confocal microwave imaging for breast cancer detection, was introduced for US imaging. Consequently, DMAS was used in PA imaging systems and it was shown this algorithm results in resolution enhancement and sidelobe degrading. However, in presence of high level of noise the reconstructed image still suffers from high contribution of noise. In this paper, a modified version of DMAS beamforming algorithm is proposed based on DAS inside DMAS formula expansion. The quantitative and qualitative results show that proposed method results in more noise reduction and resolution enhancement in expense of contrast degrading. For the simulation, two-point target, along with lateral variation in two depths of imaging are employed and it is evaluated under high level of noise in imaging medium. Proposed algorithm in compare to DMAS, results in reduction of lateral valley for about 19 dB followed by more distinguished two-point target. Moreover, levels of sidelobe are reduced for about 25 dB.
Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. How
In Photoacoustic imaging, Delay-and-Sum (DAS) algorithm is the most commonly used beamformer. However, it leads to a low resolution and high level of sidelobes. Delay-Multiply-and-Sum (DMAS) was introduced to provide lower sidelobes compared to DAS.
Photoacoustic imaging (PAI), is a promising medical imaging technique that provides the high contrast of the optical imaging and the resolution of ultrasound (US) imaging. Among all the methods, Three-dimensional (3D) PAI provides a high resolution a
In Ultrasound (US) imaging, Delay and Sum (DAS) is the most common beamformer, but it leads to low quality images. Delay Multiply and Sum (DMAS) was introduced to address this problem. However, the reconstructed images using DMAS still suffer from le
The multipath radio channel is considered to have a non-bandlimited channel impulse response. Therefore, it is challenging to achieve high resolution time-delay (TD) estimation of multipath components (MPCs) from bandlimited observations of communica