ﻻ يوجد ملخص باللغة العربية
To fathom the mechanism of high-temperature ($T_{rm c}$) superconductivity, the dynamical vertex approximation (D$Gamma$A) is evoked for the two-dimensional repulsive Hubbard model. After showing that our results well reproduce the cuprate phase diagram with a reasonable $T_{rm c}$ and dome structure, we keep track of the scattering processes that primarily affect $T_{rm c}$. We find that local particle-particle diagrams significantly screen the bare interaction at low frequencies, which in turn suppresses antiferromagnetic spin fluctuations and hence the pairing interaction. Thus we identify dynamical vertex corrections as one of the main oppressors of $T_{rm c}$, which may provide a hint toward higher $T_{rm c}$s.
One of the first finding concerning the superconducting (SC) density $n_{rm sc}$ in cuprates was their small magnitudes that revealed the importance of phase fluctuations. More recently, measurements in a variety of overdoped cuprates indicate that i
We report on broad-band infrared ellipsometry measurements of the c-axis conductivity of underdoped RBa_{2}Cu_{3}O_{7-d} (R=Y, Nd, and La) single crystals. Our data provide a detailed account of the spectral weight (SW) redistributions due to the nor
Signatures of strong coupling effects in cuprate high-$T_{c}$ superconductors have been authenticated through a variety of spectroscopic probes. However, the microscopic nature of relevant excitations has not been agreed upon. Here we report on magne
An understanding of the missing antinodal electronic excitations in the pseudogap state is essential for uncovering the physics of the underdoped cuprate high temperature superconductors. The majority of high temperature experiments performed thus fa
We propose and show that the c-axis transport in high-temperature superconductors is controlled by the pseudogap energy and the c-axis resistivity satisfies a universal scaling law in the pseudogap phase. We derived approximately a scaling function f