ﻻ يوجد ملخص باللغة العربية
Large-scale sublinearly Lipschitz maps have been introduced by Yves Cornulier in order to precisely state his theorems about asymptotic cones of Lie groups. In particular, Sublinearly biLipschitz Equivalences (SBE) are a weak variant of quasiisometries, with the only requirement of still inducing biLipschitz maps at the level of asymptotic cones. We focus here on hyperbolic metric spaces and study properties of their boundary extensions, reminiscent of quasiM{o}bius mappings. We give a dimensional invariant on the boundary that allows to distinguish hyperbolic symmetric spaces up to SBE, answering a question of Druc{t}u.
In this article we start a systematic study of the bi-Lipschitz geometry of lamplighter graphs. We prove that lamplighter graphs over trees bi-Lipschitzly embed into Hamming cubes with distortion at most~$6$. It follows that lamplighter graphs over c
Given a domain $G subsetneq Rn$ we study the quasihyperbolic and the distance ratio metrics of $G$ and their connection to the corresponding metrics of a subdomain $D subset G$. In each case, distances in the subdomain are always larger than in the o
This article analyzes sublinearly quasisymmetric homeo-morphisms (generalized quasisymmetric mappings), and draws applications to the sublinear large-scale geometry of negatively curved groups and spaces. It is proven that those homeomorphisms lack a
For a k-flat F inside a locally compact CAT(0)-space X, we identify various conditions that ensure that F bounds a (k+1)-dimensional half flat in X. Our conditions are formulated in terms of the ultralimit of X. As applications, we obtain (1) constra
We prove the differentiability of Lipschitz maps X-->V, where X is a complete metric measure space satisfying a doubling condition and a Poincare inequality, and V is a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new ch