ترغب بنشر مسار تعليمي؟ اضغط هنا

Large scale detection of half-flats in CAT(0)-spaces

162   0   0.0 ( 0 )
 نشر من قبل Jean-Francois Lafont
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a k-flat F inside a locally compact CAT(0)-space X, we identify various conditions that ensure that F bounds a (k+1)-dimensional half flat in X. Our conditions are formulated in terms of the ultralimit of X. As applications, we obtain (1) constraints on the behavior of quasi-isometries between tocally compact CAT(0)-spaces, (2) constraints on the possible non-positively curved Riemannian metrics supported by certain manifolds, and (3) a correspondence between metric splittings of a complete, simply connected, non-positively curved Riemannian manifold and the metric splittings of its asymptotic cones. Furthermore, combining our results with the Ballmann, Burns-Spatzier rigidity theorem and the classical Mostow rigidity theorem, we also obtain (4) a new proof of Gromovs rigidity theorem for higher rank locally symmetric spaces.



قيم البحث

اقرأ أيضاً

We analyze weak convergence on $CAT(0)$ spaces and the existence and properties of corresponding weak topologies.
We construct examples of smooth 4-dimensional manifolds M supporting a locally CAT(0)-metric, whose universal cover X satisfy Hruskas isolated flats condition, and contain 2-dimensional flats F with the property that the boundary at infinity of F def ines a nontrivial knot in the boundary at infinity of X. As a consequence, we obtain that the fundamental group of M cannot be isomorphic to the fundamental group of any Riemannian manifold of nonpositive sectional curvature. In particular, M is a locally CAT(0)-manifold which does not support any Riemannian metric of nonpositive sectional curvature.
We show that if X is a piecewise Euclidean 2-complex with a cocompact isometry group, then every 2-quasiflat in X is at finite Hausdorff distance from a subset which is locally flat outside a compact set, and asymptotically conical.
Mahan Mitra (Mj) proved Cannon--Thurston maps exist for normal hyperbolic subgroups of a hyperbolic group. We prove that Cannon--Thurston maps do not exist for infinite normal hyperbolic subgroups of non-hyperbolic CAT(0) groups with isolated flats w ith respect to the visual boundaries. We also show Cannon--Thurston maps do not exist for infinite infinite-index normal CAT(0) subgroups with isolated flats in non-hyperbolic CAT(0) groups with isolated flats. We obtain a structure theorem for the normal subgroups in these settings and show that outer automorphism groups of hyperbolic groups have no purely atoroidal $mathbb{Z}^2$ subgroups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا