ﻻ يوجد ملخص باللغة العربية
Second order spiral splines are $C^2$ unit-speed planar curves that can be used to interpolate a list $Y$ of $n+1$ points in $R ^2$ at times specified in some list $T$, where $ngeq 2$. Asymptotic methods are used to develop a fast algorithm, based on a pair of tridiagonal linear systems and standard software. The algorithm constructs a second order spiral spline interpolant for data that is convex and sufficiently finely sampled.
We discuss the direct use of cubic-matrix splines to obtain continuous approximations to the unique solution of matrix models of the type $Y(x) = f(x,Y(x))$. For numerical illustration, an estimation of the approximation error, an algorithm for its implementation, and an example are given.
We formulate a well-posedness and approximation theory for a class of generalised saddle point problems. In this way we develop an approach to a class of fourth order elliptic partial differential equations using the idea of splitting into coupled se
This survey paper describes the role of splines in geometry and topology, emphasizing both similarities and differences from the classical treatment of splines. The exposition is non-technical and contains many examples, with references to more thorough treatments of the subject.
We formulate a well-posedness and approximation theory for a class of generalised saddle point problems with a specific form of constraints. In this way we develop an approach to a class of fourth order elliptic partial differential equations with po
A striking discovery in the field of network science is that the majority of real networked systems have some universal structural properties. In generally, they are simultaneously sparse, scale-free, small-world, and loopy. In this paper, we investi